首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work the thermal decomposition characteristics of micron sized aluminum powder + potassium perchlorate pyrotechnic systems were studied with thermal analytical techniques. The results show that the reactivity of aluminum powder in air increases as the particle size decreases. Pure aluminum with 5 μm particle size has a fusion temperature about 647 °C, but this temperature for 18 μm powder is 660 °C. Pure potassium perchlorate has an endothermic peak at 300 °C corresponding to a rhombic-cubic transition, a fusion temperature around 590 °C and decomposes at 592 °C. DTA curves for Al5/KClO4 (30:70) mixture show a maximum peak temperature for thermal decomposition at 400 °C. Increasing the particle size of aluminum powder increases the ignition temperature of the mixture. The oxidation temperature increased by enhance in the aluminum content of the mixture.  相似文献   

2.
The thermal behaviour of commercial Carbolex single-walled carbon nanotubes (SWCNTs) both as-received and after purification by a novel method has been studied by thermogravimetric/derivative thermogravimetric/difference thermal analysis (TG/DTG/DTA). Purification from metal catalysts (Ni and Y) has been successfully obtained using 0.1 M I2 in iso-propanol instead of the usual concentrated HNO3. The final residues of thermal analysis have been characterised by scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS). The gathered results showed that the as-received SWCNTs burns out in a one-step between 573 and 923 K, whereas the SWCNTs treated with HNO3 become highly hygroscopic. The I2-iso-propanol-treated SWCNTs showed three overlapped exothermic peaks between 500 and 973 K in the DTA curve, which allowed separating amorphous carbon from SWCNTs by air-thermal treatment at 573 K. The graphite-like compounds, which are present in both untreated and treated SWCNTs, does not burn up to 1173 K.  相似文献   

3.
Thermal decomposition of a compound consisting of a tetrachloroferrate(III) anion and a quinolinium cation, of general formula [QH][FeCl4], has been studied using TG-FTIR, TG-MS, DTA and DTG techniques. The measurements were carried out in an argon atmosphere over the temperature range 20-800 °C. The solid products of the thermal decomposition were identified by IR, FIR and Mössbauer spectroscopy.  相似文献   

4.
The solid copper l-threonate hydrate, Cu(C4H6O5)·0.5H2O, was synthesized by the reaction of l-threonic acid with copper dihydrocarbonate and characterized by means of chemical and elemental analyses, IR and TG-DTG. Low-temperature heat-capacity of the title compound has been precisely measured with a small sample precise automated adiabatic calorimeter over the temperature range from 77 to 390 K. An obvious process of the dehydration occurred in the temperature range between 353 and 370 K. The peak temperature of the dehydration of the compound has been observed to be 369.304 ± 0.208 K by means of the heat-capacity measurements. The molar enthalpy, ΔdHm, of the dehydration of the resulting compound was of 16.490 ± 0.063 kJ mol−1. The experimental molar heat capacities of the solid from 77 to 353 K and the solid from 370 to 390 K have been, respectively, fitted to tow polynomial equations with the reduced temperatures by least square method. The constant-volume energy of combustion of the compound, ΔcUm, has been determined as being −1616.15 ± 0.72 kJ mol−1 by an RBC-II precision rotating-bomb combustion calorimeter at 298.15 K. The standard molar enthalpy of formation of the compound, , has been calculated to be −1114.76 ± 0.81 kJ mol−1 from the combination of the data of standard molar enthalpy of combustion of the compound with other auxiliary thermodynamic quantities.  相似文献   

5.
The kinetics of Al-Si spinel phase crystallization from calcined kaolin   总被引:1,自引:0,他引:1  
The crystallization of Al-Si spinel from medium ordered kaolin with high content of kaolinite was investigated using the differential thermal analysis (DTA). The apparent activation energy of the process was evaluated from the dependence of exothermic peak of crystallization on heating rate. Within the applied interval of heating rate (1-40 K min−1) the temperature of peak maximum increases from initial value of 1220.5 K in about 54.2 K. The apparent activation energy of the process 856±2 kJ mol−1was calculated using the Kissinger equation. The growth morphology of Al-Si spinel crystal was evaluated from the Avrami parameter. The average value of morphology parameter determined within the observed interval of heating rate is 3.08±0.03. This value indicates that crystallization mechanism of Al-Si spinel phase proceeds by bulk nucleation of the new phase with constant number of nuclei and that the three-dimensional growth of crystals is controlled by the reaction rate on the phases interface.  相似文献   

6.
The thermal diffusivities of near-stoichiometric (U, Ce)O2 solid solutions containing CeO2 up to 22 mol% were investigated in the temperature range of 298-1273 K using the laser flash method. Also, linear thermal expansion measurements were performed in the temperature range of 298-1673 K using a thermomechanical analysis. The thermal conductivities were determined by a calculation of the thermal diffusivity, the density and the specific heat. The thermal conductivities of the tested samples could be expressed as a function of the temperature by the phonon conduction equation k = (A + BT)−1. The thermal conductivity decreased gradually with an increasing Ce content. This was attributable to the increasing lattice defect thermal resistance caused by the U4+, Ce4+ and O2− ions as phonon scattering centers.  相似文献   

7.
The thermal decomposition of ammonia-borane BH3NH3 in the temperature range up to 450 K has been studied by differential scanning calorimetry (DSC) and volumetric analysis of the released volatile decomposition products. Measurements were performed in a transitiometer ST6-VI under pressures up to 600 bar and in a DSC C-80 in the pressure range 1-100 bar hydrogen. Above 360 K ammonia-borane undergoes an exothermic decomposion, which proceeds in two steps with rising temperature. The decomposition is accompanied by hydrogen release. Formation of further volatile products, beside hydrogen, seems to be negligible. The heat evolution and hydrogen release terminates near 430 K. The final amount of released hydrogen is approximately equal to 2 mol H2/mol ammonia-borane. Variation of pressure does not influence significantly the reaction enthalpy and hydrogen release. The transitiometer ST6-VI is well-suitable for the monitoring of solid-gas reaction under high-pressure conditions. This instrument enables a reliable determination of the reaction heat and the amount of gas release/gas uptake.  相似文献   

8.
The molar heat capacities of 1-(2-hydroxy-3-chloropropyl)-2-methyl-5-nitroimidazole (Ornidazole) (C7H10ClN3O3) with purity of 99.72 mol% were measured with an adiabatic calorimeter in the temperature range between 79 and 380 K. The melting-point temperature, molar enthalpy, ΔfusHm, and entropy, ΔfusSm, of fusion of this compound were determined to be 358.59±0.04 K, 21.38±0.02 kJ mol−1 and 59.61±0.05 J K−1 mol−1, respectively, from fractional melting experiments. The thermodynamic function data relative to the reference temperature (298.15 K) were calculated based on the heat capacities measurements in the temperature range from 80 to 380 K. The thermal stability of the compound was further investigated by DSC and TG. From the DSC curve an intensive exothermic peak assigned to the thermal decomposition of the compound was observed in the range of 445-590 K with the peak temperature of 505 K. Subsequently, a slow exothermic effect appears when the temperature is higher than 590 K, which is probably due to the further decomposition of the compound. The TG curve indicates the mass loss of the sample starts at about 440 K, which corresponds to the decomposition of the sample.  相似文献   

9.
Carboxin was synthesized and its heat capacities were measured with an automated adiabatic calorimeter over the temperature range from 79 to 380 K. The melting point, molar enthalpy (ΔfusHm) and entropy (ΔfusSm) of fusion of this compound were determined to be 365.29±0.06 K, 28.193±0.09 kJ mol−1 and 77.180±0.02 J mol−1 K−1, respectively. The purity of the compound was determined to be 99.55 mol% by using the fractional melting technique. The thermodynamic functions relative to the reference temperature (298.15 K) were calculated based on the heat capacity measurements in the temperature range between 80 and 360 K. The thermal stability of the compound was further investigated by differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis. The DSC curve indicates that the sample starts to decompose at ca. 290 °C with the peak temperature at 292.7 °C. The TG-DTG results demonstrate the maximum mass loss rate occurs at 293 °C corresponding to the maximum decomposition rate.  相似文献   

10.
NiO nanoparticles with an average size of 15 nm were easily prepared via the thermal decomposition of the tris(ethylenediamine)Ni(II) nitrate complex [Ni(en)3](NO3)2 as a new precursor at low temperature, and the nanoparticles were characterized by thermal analysis (TGA/DTA), X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FT-IR), UV-Vis spectroscopy, BET specific surface area measurement, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and magnetic measurements. The magnetic measurements confirm that the product shows a ferromagnetic behavior at room temperature, which may be ascribed to a size confinement effect. The NiO nanoparticles prepared by this method could be an appropriate photocatalytic material due to a strong absorption band at 325 nm. This method is simple, fast, safe, low-cost and also suitable for industrial production of high purity NiO nanoparticles for applied purposes.  相似文献   

11.
The thermal decomposition of hydrotalcites with chromate, molybdate and sulphate in the interlayer has been studied using thermogravimetric analysis coupled to a mass spectrometer measuring the gas evolution. X-ray diffraction shows the hydrotalcites have a d(0 0 3) spacing of 7.98 Å with very small differences in the d-spacing between the three hydrotalcites. XRD was also used to determine the products of the thermal decomposition. For the sulphate-hydrotalcite decomposition the products were MgO and a spinel MgAl2O4, for the chromate interlayered hydrotalcite MgO, Cr2O3 and spinel. For the molybdate interlayered hydrotalcite the products were MgO, spinel and MgMoO4. EDX analyses enabled the formula of the hydrotalcites to be determined. Two processes are observed in the thermal decomposition namely dehydration and dehydroxylation and for the case of the sulphate interlayered hydrotalcite, a third process is the loss of sulphate. Both the dehydration and dehydroxylation take place in three steps each for each of the hydrotalcites.  相似文献   

12.
A thermogravimetric study of the alunites of sodium, potassium and ammonium   总被引:1,自引:0,他引:1  
Thermogravimetry in tandem with mass spectrometry has been used to characterise the thermal decomposition of synthetic alunites of potassium, sodium and ammonium. Three mechanisms of decomposition are observed (a) dehydration, (b) dehydroxylation and (c) desulphation. The thermal decomposition of the three alunites is different. For NH4-alunite, an additional process of de-ammoniation is observed which occurs simultaneously with dehydration. Dehydroxylation takes place in a series of four steps. De-sulphation occurs for K-alunite at 680 °C in a single step in comparison with Na and NH4 alunites where de-sulphation is observed in a series of four steps. The temperature of desulphation is cation dependent. The thermal decomposition is not completed until around 800 °C.  相似文献   

13.
The thermal conductivity and heat capacity of high-purity single crystals of yttrium titanate, Y2Ti2O7, have been determined over the temperature range 2 K?T?300 K. The experimental heat capacity is in very good agreement with an analysis based on three acoustic modes per unit cell (with the Debye characteristic temperature, θD, of ca. 970 K) and an assignment of the remaining 63 optic modes, as well as a correction for CpCv. From the integrated heat capacity data, the enthalpy and entropy relative to absolute zero, are, respectively, H(T=298.15 K)−H0=34.69 kJ mol−1 and S(T=298.15 K)−S0=211.2 J K−1 mol−1. The thermal conductivity shows a peak at ca. θD/50, characteristic of a highly purified crystal in which the phonon mean free path is about 10 μm in the defect/boundary low-temperature limit. The room-temperature thermal conductivity of Y2Ti2O7 is 2.8 W m−1 K−1, close to the calculated theoretical thermal conductivity, κmin, for fully coupled phonons at high temperatures.  相似文献   

14.
Polycrystalline samples of strontium series perovskite type oxides, SrHfO3 and SrRuO3 were prepared and the thermophysical properties were measured. The average linear thermal expansion coefficients are 1.13×10−5 K−1 for SrHfO3 and 1.03×10−5 K−1 for SrRuO3 in the temperature range between 423 and 1073 K. The melting temperatures Tm of SrHfO3 and SrRuO3 are 3200 and 2575 K, respectively. The longitudinal and shear sound velocities were measured by an ultrasonic pulse-echo method at room temperature in air, which enables to evaluate the elastic moduli and Debye temperature. The heat capacity was measured by using a differential scanning calorimeter, DSC in high-purity argon atmosphere. The thermal diffusivity was measured by a laser flash method in vacuum. The thermal conductivities of SrHfO3 and SrRuO3 at room temperature are 5.20 and 5.97 W m−1 K−1, respectively.  相似文献   

15.
Thermal analyses of synthetic and natural vivianite (Fe2+)3(PO4)2·8H2O) were determined using a high-resolution thermal analyser coupled to a mass spectrometer.Five dehydration weight loss steps were observed for the natural vivianite at 105, 138, 203, 272 and 437 °C. The first weight loss step involves the reaction (Fe2+)3(PO4)2·8H2O→(Fe2+)3(PO4)2·3H2O+5H2O. The TGA/MS for the synthetic vivianite gave similar results to that of the natural sample. Mass spectrometry shows that water is lost up to 450 °C and after this temperature oxygen is lost. Changes in the structure of vivianite were followed using infrared emission spectroscopy. A model is proposed for the dehydration of vivianite.  相似文献   

16.
Single crystals of SrAl2Si2 were synthesized by reaction of the elements in an aluminum flux at 1000 °C. SrAl2Si2 is isostructural to CaAl2Si2 and crystallizes in the hexagonal space group P-3m1 (90 K, a=4.1834 (2), c=7.4104 (2) Å, Z=1, R1=0.0156, wR2=0.0308). Thermal analysis shows that the compound melts at ∼1020 °C. Low-temperature resistivity on single crystals along the c-axis shows metallic behavior with room temperature resistivity value of ∼7.5 mΩ cm. High-temperature Seebeck, resistivity, and thermal conductivity measurements were made on hot-pressed pellets. The Seebeck coefficient shows negative values in entire temperature range decreasing from ∼−78 μV K−1 at room temperature to −34 μV K−1 at 1173 K. Seebeck coefficients are negative indicating n-type behavior; however, the temperature dependence is consistent with contribution from minority p-type carriers as well. The lattice contribution to the thermal conductivity is higher than for clathrate structures containing Al and Si, approximately 50 mW cm−1 K, and contributes to the overall low zT for this compound.  相似文献   

17.
Charges evolution in poly(methyl methacrylate) (PMMA) samples under thermal aging effect has been studied by means of two complementary techniques, thermal step method (TSM) and thermally stimulated depolarization current (TSDC). For the first method, measurements reveal that injected charges, whose quantity is found depending on the number of applied temperature cycles, remain close to the surface sample. TSDC measurements have been carried out for different temperatures ranging from 25 °C to 140 °C. Three distinguishable dipolar relaxations (β1, β2 and α) have been highlighted. In the same way, the presence of polarization and injected charges has been confirmed. In support of electric characterization, X-ray reflectometry has been used. The obtained results equally emphasized the thermal aging effect on the material.  相似文献   

18.
Ternary iridium oxides Ln3IrO7 (Ln=Pr, Nd, Sm, and Eu) were prepared and their crystal structures, magnetic and thermal properties were investigated. Powder X-ray diffractions (XRDs) were measured for all samples and neutron diffraction (ND) measurements were performed for Pr3IrO7. All the profiles were refined with space group Cmcm (No. 63). The lattice parameters for Pr3IrO7 refined by using ND data are a=10.9782(13) Å, b=7.4389(9) Å, and c=7.5361(9) Å. From specific heat and differential thermal analysis (DTA) measurements, Ln3IrO7 (Ln=Pr, Nd, Sm, and Eu) show thermal anomalies at 261, 342, 420, and 485 K, respectively. The results of powder high-temperature XRD and ND measurements indicate that these anomalies are due to the structural phase transition. Magnetic susceptibilities of these compounds were measured in the temperature range between 1.8 and 400 K. Nd3IrO7 shows an antiferromagnetic transition at 2.6 K. A specific heat anomaly has also been observed at the same temperature. For Ln3IrO7 (Ln=Pr, Sm, and Eu), no magnetic anomalies have been found in the experimental temperature range.  相似文献   

19.
A complex of holmium perchlorate coordinated with l-glutamic acid, [Ho2(l-Glu)2(H2O)8](ClO4)4·H2O, was prepared with a purity of 98.96%. The compound was characterized by chemical, elemental and thermal analysis. Heat capacities of the compound were determined by automated adiabatic calorimetry from 78 to 370 K. The dehydration temperature is 350 K. The dehydration enthalpy and entropy are 16.34 kJ mol−1 and 16.67 J K−1 mol−1, respectively. The standard enthalpy of formation is −6474.6 kJ mol−1 from reaction calorimetry at 298.15 K.  相似文献   

20.
The heteronuclear Bi[Fe(CN)6]·5H2O complex was synthesized and single-phase perovskite-type BiFeO3 nanoparticles with an average size of 30 nm were obtained by its decomposition at 600 °C. The complex and its decomposition products were analyzed using elemental analysis, thermal analysis (TGA/DTA/DSC), X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FT-IR), UV–Vis spectroscopy, BET specific surface area measurement, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and magnetic measurements. The magnetic measurement confirms that the product shows a ferromagnetic order at room temperature, which may be ascribed to the size confinement effect. The DTA and DSC results confirm the multiferroic nature of the BiFeO3 nanoparticles with Neel and Curie points at 372 and 825 °C, respectively. The BiFeO3 prepared by this method could be an appropriate visible-light photocatalytic material due to its strong absorption band in the visible region. This method is simple, low-cost, safe and also suitable for industrial production of high purity perovskite-type BiFeO3 nanoparticles for electromagnetic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号