首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 151 毫秒
1.
Rare-earth ammonium sulfate octahydrates of R2(SO4)3·(NH4)2SO4·8H2O (R=Pr, Nd, Sm, and Eu) were synthesized by a wet process, and the stable temperature region for the anhydrous R2(SO4)3·(NH4)2SO4 form was clarified by thermogravimetry/differential thermal analysis, infrared, Raman, and electrical conductivity measurements. Detailed characterization of these double salts demonstrated that the thermal stability of anhydrous R2(SO4)3·(NH4)2SO4 is different between the Pr, Nd salts and the Sm, Eu salts, and the thermal decomposition behavior of these salts was quite different from the previous reports.  相似文献   

2.
Gaseous products evolved from (NH4)2SO4, NH4HSO4 and NH4NH2SO3 during successive heating and cooling cycles were flushed with inert gas into analyzer Dräger tubes hooked tightly to the terminal port of the DSC cell base. This simple procedure allowed the starting temperature of the decomposition to be determined and the amount of the individual gases in the mixture to be identified and even estimated. NH4NH2SO3 at 523 K in humid air produced HNH2SO3 initially and, on further cycling, (NH4)2SO4 and NH4HSO4 also appeared. The ΔHf values for NH4HSO4 were (kJ mole?1): in an airtight sample holder 12.67, in a dry argon atmosphere 11.93, and in a static air atmosphere 10.92. Endothermic peaks for (NH4)2SO4 and 498 and 411 K represented the incongruent melting point and the polymorphic transition of (NH4)2SO4·NH4HSO4. After the first heating in air to 530 K, (NH4)2SO4 and NH4HSO4 exhibited closely similar cyclic DSC curves. The endothermic peaks at about 393–420 K may be assigned to different combinations of (NH4)2SO4 and NH4HSO4.  相似文献   

3.
The FT IR and FT Raman spectra of Co(en)3Al3P4O16 · 3H2O (compound I) and [NH4]3[Co(NH3)6]3[Al2(PO4)4]2 · 2H2O (compound II) are recorded and analysed based on the vibrations of Co(en)33+, Co(NH3)63+, NH4+, Al---O---P, PO3, PO2 and H2O. The observed splitting of bands indicate that the site symmetry and correlation field effects are appreciable in both the compounds. In compound I, the overtone of CH2 deformation Fermi resonates with its symmetric stretching vibration. The NH4 ion in compound II is not free to rotate in the crystalline lattice. Hydrogen bonding of different groups is also discussed.  相似文献   

4.
A new anhydrous proton conducting membrane for solid-state electrochromic device (ECD) based on poly(vinyl alcohol) (PVA), imidazole (Imi), and ammonium dihydrogen phosphate (NH4H2PO4) was prepared. The structure of PVA/Imi/NH4H2PO4 composite membrane was studied by X-ray diffraction and differential scanning calorimetry (DSC). The transmittance of the membrane always decreases with increasing content of the imidazolium. Compared with the PVA/NH4H2PO4 membrane, the addition of proper amount of Imi can enhance the proton conductivity to a certain extent. At low PVA content, equal molar ratio of Imi and NH4H2PO4 is favorable for high proton conductivity, while higher molar ratio of Imi and NH4H2PO4 is beneficial at high PVA content.  相似文献   

5.
A new ammonium indium phosphate (NH4)In(OH)PO4 was prepared by hydrothermal reaction in the In2O3-NH4H2PO4-NH3/OH system (T=200°C, autogenous pressure, 7 days). The formula (NH4)In(OH)PO4 was determined on the basis of chemical and thermal analysis (TG/DSC), X-ray powder diffraction and IR-spectroscopy. (NH4)In(OH)PO4 crystallizes in the tetragonal system with space group P43212 (No. 96); a=9.4232(1) Å, c=11.1766(1) Å, V=992.45(2) Å3; Z=8. The crystal structure was refined by the Rietveld method (Rw=6.35%, Rp=5.10%). The second-harmonic generation study confirmed that structure of (NH4)In(OH)PO4 does not have a center of symmetry. The cis-InO4(OH)2 octahedra form helical chains, parallel to the c-axis. The In-O-In bonds are nearly equidistant. The chains are interconnected by phosphate tetrahedra and create tunnels containing the NH4+ ions along the c-axis. (NH4)In(OH)PO4 is isostructural with RbIn(OH)PO4.  相似文献   

6.
A re-interpretation and re-evaluation of single-crystal X-ray diffraction data of a previously reported ‘(NH4)2(NH3)[Ni(NH3)2Cl4]’ (J. Solid State Chem. 162 (2001) 254) give a new formula (NH4)2−2z[Ni(NH3)2]z[Ni(NH3)2Cl4] with z=0.152. This new formula results from defects in an idealized ‘(NH4)2[Ni(NH3)2Cl4]’ basic structure, where two adjacent NH4+ cations are replaced by one Ni(NH3)22+ unit. Cl anions from the basic structure complete the coordination sphere of the new Ni2+ to [Ni(NH3)2Cl4]2−.  相似文献   

7.
Raman and FTIR spectra of guanidinium zinc sulphate [C(NH2)3]2Zn(SO4)2 are recorded and the spectral bands assignment is carried out in terms of the fundamental modes of vibration of the guanidinium cations and sulphate anions. The analysis of the spectrum reveals distorted SO42− tetrahedra with distinct S–O bonds. The distortion of the sulphate tetrahedra is attributed to Zn–O–S–O–Zn bridging in the structure as well as hydrogen bonding. The CN3 group is planar which is expressed in the twofold symmetry along the C–N (1) vector. Spectral studies also reveal the presence of hydrogen bonds in the sample. The vibrational frequencies of [C(NH2)3]2 and HC(NH2)3 are computed using Gaussian 03 with HF/6-31G* as basis set.  相似文献   

8.
The conductivity of ammonium dihydrogen phosphate has been measured as a function of temperature and dopant concentration. A previously disputed break in the log conductivity vs reciprocal temperature plots has been observed. The activation energy is in agreement with previous work on NH4H2PO4. In addition, the conductivity vs concentration of NH4HSO4 plot is linear, permitting the calculation of the L defect mobility and indicating that the proton is the conducting species. It is concluded that the mechanism of conduction is the same as previously proposed for KH2PO4 and KH2AsO4.  相似文献   

9.
Mixed crystals of Li[Kx(NH4)1−x]SO4 have been obtained by evaporation from aqueous solution at 313 K using different molar ratios of mixtures of LiKSO4 and LiNH4SO4. The crystals were characterized by Raman scattering and single-crystal and powder X-ray diffraction. Two types of compound were obtained: Li[Kx(NH4)1−x]SO4 with x?0.94 and Li2KNH4(SO4)2. Different phases of Li[Kx(NH4)1−x]SO4 were yielded according to the molar ratio used in the preparation. The first phase is isostructural to the room-temperature phase of LiKSO4. The second phase is the enantiomorph of the first, which is not observed in pure LiKSO4, and the last is a disordered phase, which was also observed in LiKSO4, and can be assumed as a mixture of domains of two preceding phases. In the second type of compound with formula Li2KNH4(SO4)2, the room-temperature phase is hexagonal, symmetry space group P63 with cell-volume nine times that of LiKSO4. In this phase, some cavities are occupied by K+ ions only, and others are occupied by either K+ or NH4+ at random. Thermal analyses of both types of compounds were performed by DSC, ATD, TG and powder X-ray diffraction. The phase transition temperatures for Li[Kx(NH4)1−x]SO4x?0.94 were affected by the random presence of the ammonium ion in this disordered system. The high-temperature phase of Li2KNH4(SO4)2 is also hexagonal, space group P63/mmc with the cell a-parameter double that of LiKSO4. The phase transition is at 471.9 K.  相似文献   

10.
This contribution presents the results of a single crystal X-ray diffraction study of three ammine complexes of bivalent platinum and palladium: [Pt(NH3)4](N03)2, [Pd(NH3)4](N03)2 and [Pd(NH3)4]F2H2O. The first two compounds are isostructural; metal atoms are located on inversion centers, all other atoms are in general positions. A three-dimensional framework is built from planar-square complex cations and nitrate ions joined by N-H...O hydrogen bonds. In [Pd(NH3)4]F2H2O, palladium atoms, as in the previous cases, are located on inversion centers, while oxygen atoms of water molecules are on the two-fold symmetry axis. A network of strong N-H...F and O-H...F hydrogen bonds linking the cations, anions, and crystallization water molecules is present in the structure.  相似文献   

11.
EPR studies of Gd3+ doped in single crystals of Nd2(SO4)3·(NH4)2SO4·8H2O (hereafter referred to as NASO) at room (RT) and liquid nitrogen (LNT) temperatures exhibit that (1) the metal aquo complex has a tetragonal symmetry with abnormally low magnitudes of crystalline field parameters at RT and (2) NASO undergoes a possible phase transition between RT and LNT.  相似文献   

12.
Compounds with the general formula Catx[Sc(H2O)z(SO4)y] · nH2O (Cat = NH4, H2Bipy (Bipy is 4,4′-bipyridine), and HEdp (Edp is ethylenedipyridine) are synthesized and identified by elemental analysis and IR spectral data. The X-ray diffraction analysis of (H2Bipy)[Sc(H2O)(SO4)2]2 · 2H2O shows that in the structure of this compound, the chains of ScO6 octahedra and SO4 tetrahedra are united to form ribbons due to the tridentate coordination of the sulfate ion. The ribbons form a framework, whose infinite cavities contain H2Bipy2+ cations.__________Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 8, 2005, pp. 576–582.Original Russian Text Copyright © 2005 by Petrosyants, Ilyukhin, Sukhorukov.  相似文献   

13.
14.
Two new gallium phosphates, [NH3(CH2)4NH3][Ga4(PO4)4 (HPO4)] (I) and [NH3(CH2)4NH3][Ga(PO4)(HPO4)] (II), have been synthesized under solvothermal conditions in the presence of 1,4-diaminobutane and their structures determined using room-temperature single-crystal X-ray diffraction data. Compound (I) (Mr=844.90, triclinic, space group P-1, a=9.3619(3), b=10.1158(3) and c=12.6456(5) Å, α=98.485(1), β=107.018(2) and γ=105.424(1)°; V=1070.39 Å3, Z=2, R=3.68% and Rw=4.40% for 2918 observed data [I>3(σ(I))]) consists of GaO4 and PO4 tetrahedra and GaO5 trigonal bipyramids linked to generate an open three-dimensional framework containing 4-, 6-, 8-, and 12-membered rings of alternating Ga- and P-based polyhedra. 1,4-Diaminobutane dications are located in channels bounded by the 12-membered rings in the two-dimensional pore network and are held to the framework by hydrogen bonding. Compound (II) (Mr=350.84, monoclinic, space group P21/c, a=4.8922(1), b=18.3638(6) and c=13.7468(5) Å, β=94.581(1)°; V=1227.76 Å3, Z=4, R=2.95% and Rw=3.37% for 2050 observed data [I>3(σ(I))]) contains chains of edge-sharing 4-membered rings of alternating GaO4 and PO4 tetrahedra constituting a backbone from which hang ‘pendant’ PO3(OH) groups. Hydrogen bonding between the GaPO framework and the diamine dications holds the structure together. A previously reported phase, [NH3(CH2)4NH3][Ga4(PO4)4(HPO4)] (V), structurally related but distinct from its stoichiometric equivalent, (I), has been prepared as a pure phase by this method. Two further materials, [NH3(CH2)5NH3][Ga4(PO4)4(HPO4)] (III) (tricli- nic, lattice parameters from PXD: a=9.3565(4), b=5.0156(2) and c=12.7065(4) Å, α=96.612(3), β=102.747(4) and γ=105.277(3)°) and [NH3(CH2)5NH3][Ga(PO4)(HPO4)] (IV) (Mr=364.86, monoclinic, space group P21/n, a=4.9239(2), b=13.2843(4) and c=19.5339(7) Å, β=96.858(1)°; V=1268.58 Å3, Z=4, R=3.74% and Rw=4.44% for 2224 observed room-temperature data [I>3(σ(I))]), were also prepared under similar conditions in the presence of 1,5-diaminopentane. (III) and (IV) are structurally related to, yet distinct from (I) and (II) respectively.  相似文献   

15.
Two new niobium phosphates were synthesized and their crystal structures determined from single-crystal X-ray data. [NbOF(PO4)](N2C5H7) (1) (monoclinic, space group P21/c, a=11.442(1), b=9.1983(7), c=9.1696(8) Å, β=109.94(1)°) has a layered structure and is the first example of a negatively charged NbOF(PO4) layer analogous to the MO(H2O)PO4 (M=V, Nb) layers. The layer charge is compensated by interlayer 4-aminopyridnium cations that adopt an unusual arrangement as a consequence of H-bonding and π-π interactions. The interlayer aminopyridnium cations can be exchanged with alkylammonium ions which form bilayers inclined at ∼65° to the NbOF(PO4) layer. [(Nb0.9V1.1)O2(PO4)2(H2PO4)] (N2C2H10) (2) (orthorhombic, space group Pbca, a=15.821(2),b=9.0295(9),c=18.301(2) Å) has a disordered three-dimensional structure based on NbO(PO4) layers cross-linked by phosphate tetrahedra, and has a similar structure to the known vanadium analog [V2O2(PO4)2(H2PO4)] (N2C2H10).  相似文献   

16.
A new layered inorganic-organic hybrid aluminum phosphate-oxalate [H3N(CH2)4NH3]2[Al4(C2O4)(H2PO4)2(PO4)4]·4[H2O](AlPO-CJ25) has been synthesized hydrothermally, by using 1,4-diaminobutane (DAB) as structure-directing agent. The structure has been solved by single-crystal X-ray diffraction analysis and further characterized by IR, 31P MAS NMR, TG-DTA as well as compositional analyses. Crystal data: the triclinic space group P-1, a=8.0484(7) Å, b=8.8608(8) Å, c=13.2224(11) Å, α=80.830(6)°, β=74.965(5)°, γ=78.782(6)°, Z=2, R1[I>2σ(I)]=0.0511 and wR2(all data)=0.1423. The alternation of AlO4 tetrahedra and PO4 tetrahedra gives rise to the four-membered corner-sharing chains, which are interconnected through AlO6 octahedra to form the layered structure with 4,6-net sheet. Interestingly, oxalate ions are bis-bidentately bonded by participating in the coordination of AlO6, and bridging the adjacent AlO6 octahedra. The layers are held with each other through strong H-bondings between the terminal oxygens. The organic ammonium cations and water molecules are located in the large cavities between the interlayer regions.  相似文献   

17.
18.
For studying the sulfation of Al2O3, CaO, CdO and ZnO with (NH4)2SO4, free energy values have been calculated for possible reactions utilising the available thermodynamic data. Further differential thermal analysis has been carried out to find out the exact reaction. The ΔH0 values calculated theoretically and that from DTA peak are very close in case of CaO and ZnO, whereas in the other two cases there is no proper match. The mismatch may be due to some uncertainty in thermodynamic values and the possibility of some side reactions.  相似文献   

19.
Synthesis, crystal structure, DSC characterization, dielectric and Raman measurements are given for a new mixed solution K0.84(NH4)1.16SO4Te(OH)6 (KNST). X-ray studies showed that the title compound crystallizes in the monoclinic system (P21/c) with the following parameters: , , , β=120.17(2)° and Z=4. The structure can be regarded as being built of isolated TeO6 octahedra, SO4 tetrahedra and cations. The main feature of this structure is the coexistence of two types of hydrogen bonds OHO and NHO ensuring the cohesion of the crystal. Crystals of K0.84(NH4)1.16SO4Te(OH)6 undergo two endothermic peaks at 425 and 480 K and a shoulder at 470 K. These transitions detected by DSC and analyzed by dielectric measurements using the impedance and modulus spectroscopy techniques. Raman scattering measurements on K0.84(NH4)1.16SO4Te(OH)6 material taken between 300 and 620 K are reported in this paper. The spectra indicate clearly two phase transitions.  相似文献   

20.
通过简便的蒸发方法得到了 2种碱金属磺酸盐非线性光学(NLO)晶体, 即 Li(NH2SO3)和 Na(NH2SO3)。Li(NH2SO3)以极性空间群Pca21(编号 29)结晶。Li(NH2SO3)的结构可以描述为由[LiO4]7-多面体通过共角连接与 NH2SO3-四面体相互连接而形成的三维网络。Na(NH2SO3)以极性空间群 P212121(编号 19)结晶。Na(NH2SO3)的结构可以描述为由扭曲的[NaO6]11-八面体通过共角连接与 NH2SO3-四面体相互连接而形成的三维网络。紫外可见近红外光谱表明, Li(NH2SO3)和 Na(NH2SO3)分别具有 5.25 和 4.81 eV 的大光学带隙。粉末二次谐波发生(SHG)测量显示, Li(NH2SO3)和 Na(NH2SO3)的 SHG 强度分别为 KH2PO4的 0.32 倍和 0.31倍。第一原理计算证实, 非线性光学性能主要来自氨基磺酸阴离子和碱金属氧阴离子多面体的协同作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号