首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reduction of sulfur content in gasoline and diesel fuel is a great environmental concern to reduce the motor vehicle emissions. Oxidative desulfurization using acetonitrile biphasic system has received much attention in recent years. The oxidative desulfurization can be oxidized the unreactive sulfur contents in the hydrodesulfurization and removed effectively. For the oxidative desulfurization process design and development, liquid–liquid equilibria (LLE) for acetonitrile biphasic systems are needed as fundamental information. In our previous work, LLE for acetonitrile + n-octane and + n-decane systems have been reported. In this work, therefore, LLE for acetonitrile + n-hexadecane system was measured. Furthermore, NRTL equation was applied to correlate the LLE for these three acetonitrile + n-alkane systems.  相似文献   

2.
Liquid–liquid equilibrium measurements for four binary N,N-dimethylformamide + hydrocarbon (hexane, heptane, octane, and cyclohexane) systems were performed using a laser scattering technique. The experimentally determined cloud points were satisfactorily correlated with two local composition models (NRTL, and Tsuboka–Katayama's modification of the Wilson equation). In addition, the prediction of LLE by means of the modified UNIFAC (Dortmund) model was also tested.  相似文献   

3.
The phase diagrams of binary mixtures formed by 1-ethyl-3-methylimidazolium hexafluorophosphate ([emim][PF6]) and 2-phenylimidazole or 4,5-diphenylimidazole or 2,4,5-triphenylimidazole has been established using differential scanning calorimetry. Solutions containing 2,4,5-triphenylimidazole display phase splitting at high temperature range.  相似文献   

4.
(Liquid + liquid) equilibrium (LLE) data for ternary system {heptane (1) + m-xylene (2) + N-formylmorpholine (3)} have been determined experimentally at temperatures ranging from 298.15 K to 353.15 K. Complete phase diagrams were obtained by determining solubility and tie-line data. Tie-line compositions were correlated by Othmer-Tobias and Bachman methods. The universal quasichemical activity coefficient (UNIQUAC) and The non-random two liquids equation (NRTL) were used to correlate the phase equilibrium in the system using the interaction parameters determined from experimental data. It is found that UNIQUAC and NRTL used for LLE could provide a good correlation. Distribution coefficients, separation factors, and selectivity were evaluated for the immiscibility region.  相似文献   

5.
Isobaric vapor-liquid equilibrium (VLE) data for acetic acid + water, acetic acid + n-propyl acetate, acetic acid + iso-butyl acetate, acetic acid + water + n-propyl acetate, acetic acid + water + iso-butyl acetate are measured at 101.33 kPa with a modified Rose still. The nonideal behavior in vapor phase caused by the association of acetic acid are corrected by the chemical theory and Hayden-O’Connell method, and analyzed by calculating the second virial coefficients and apparent fugacity coefficients. The VLE data for acetic acid + water, acetic acid + n-propyl acetate, and acetic acid + iso-butyl acetate are correlated through the NRTL and UNIQUAC models using the nonlinear least square method. The obtained NRTL model parameters are used to predict the ternary VLE data. The ternary predicted values obtained in this way agree well with the experimental values.  相似文献   

6.
Experimental density and the refractive index of the ternary mixture acetone + n-hexane + water, and their binary systems were experimentally measured and correlated at 298.15 K and atmospheric pressure. A maximum in refractive indices has been observed for the acetone + water system while the excess molar volume and the molar refraction change are all negative. For the mixture acetone + n-hexane, the excess molar volume is always positive and the molar refraction change of mixing showed a S-shaped dependence on acetone composition. The excess molar volumes and molar refraction changes of mixing were correlated using the Redlich-Kister expression and Cibulka equation. The coefficients and standard deviation between the experimental and fitted values were estimated. Good agreement between both results was obtained.  相似文献   

7.
(Liquid + liquid) equilibrium (LLE) data of the solubility (binodal) curves and tie-line end composition were examined for mixtures of {water (1) + propionic acid (2) + octanol or nonanol or decanol or dodecanol (3)} at T = 298.15 K and 101.3 ± 0.7 kPa. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. The LLE data of the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

8.
The isobaric thermal expansivity against temperature and pressure for the system 1-hexanol + n-hexane was directly determined by means of a calorimetric method. From these data, the excess isobaric thermal expansivity is calculated at representative temperatures and pressures. The obtained results for this excess quantity are qualitatively discussed by applying well-known arguments often used for explaining the thermodynamic behavior of alcohol + alkane mixtures. In order to check the consistency of these data with those of literature, the derivative of excess molar volume against temperature and that of excess isobaric molar heat capacity against pressure are calculated and compared with those obtained from literature data. Very good coherence between both data sources is obtained.  相似文献   

9.
Experimental vapor–liquid equilibria (VLE) for the CO2 + n-nonane and CO2 + n-undecane systems were obtained by using a 100-cm3 high-pressure titanium cell up to 20 MPa at four temperatures (315, 344, 373, and 418 K). The apparatus is based on the static-analytic method; which allows fast determination of the coexistence curve. For the CO2 + n-nonane system, good agreement was found between the experimental data and those reported in literature. No literature data were available for the CO2 + n-undecane system at high temperature and pressure. Experimental data were correlated with the Peng–Robinson equation of state using the classical and the Wong–Sandler mixing rules.  相似文献   

10.
A differential scanning calorimeter (DSC) was used to determine binary solid-liquid equilibria (SLE) for dibenzofuran+n-C24 and naphthalene+n-C24 mixtures. Results obtained with this technique were compared with those predicted by two modified UNIFAC (Universal Functional group Acitivity Coefficients) versions. This model is employed with the idea to extensively investigate the validity of UNIFAC (Larsen and Gmehling versions). The corresponding activity coefficients were calculated and applied to the prediction of non-electrolyte mixtures real behavior. Reasons of prediction without success in the case of using original interaction parameters, were analysed and discussed. Interesting representation of solubility diagrams was obtained using partly readjusted UNIFAC interaction parameters. The two systems selected can be used for contributing to develop the data base using group contribution methods. For practical purposes, SLE are of interest in chemical process design, especially when process conditions must be specified to prevent precipitation of a solid.  相似文献   

11.
Liquid–liquid equilibrium (LLE) data of the solubility (binodal) curves and tie-line end compositions were examined for mixtures of {(water (1) + levulinic acid (2) + dimethyl succinate or dimethyl glutarate or dimethyl adipate (3)} at 298.15 K and 101.3 ± 0.7 kPa. The reliability of the experimental tie-line data was confirmed by using the Othmer–Tobias correlation. The LLE data of the ternary systems were predicted by UNIFAC method. The LLE data were correlated fairly well with UNIQUAC and NRTL models, indicating the reliability of the UNIQUAC and NRTL equations for these ternary systems. The best results were achieved with the NRTL equation, using non-randomness parameter (α = 0.3) for the correlation. Distribution coefficients and separation factors were measured to evaluate the extracting capability of the solvents.  相似文献   

12.
To simulate cyclohexane to cyclohexanol oxidation reactors, the acquisition and modeling of vapor-liquid equilibria of the key components, under the process conditions, are essential. n-Hexanoic acid is a co-product of the reaction. Vapor-liquid equilibrium data are reported for the cyclohexane + n-hexanoic acid binary system at four temperatures: 413, 423, 464 and 484 K. All measurements have been carried out using an apparatus based on the “static-analytic” method, with two ROLSI™ pneumatic capillary samplers. The generated data are successfully correlated using two equations of state, the Peng-Robinson (PR) and the Perturbed Chain Statistical Association Fluid Theory (PC-SAFT). Both models are capable of representing the experimental data, but the PC-SAFT EoS uses less binary interaction parameters.  相似文献   

13.
An apparatus based on the static-analytic method was used to measure the vapor–liquid equilibria (VLE) for CO2 + alkanol systems. Equilibrium measurements for the CO2 + 1-propanol system were performed from 344 to 426 K. For the case of the CO2 + 2-propanol system, measurements were made from 334 to 443 K, and for the CO2 + 1-butanol were obtained from 354 to 430 K. VLE data were correlated with the Peng–Robinson equation of state using the classical and the Wong–Sandler mixing rules. Moreover, compressed liquid densities for the n-dodecane and n-tridecane were obtained via a vibrating tube densitometer at temperatures from 313 to 363 K and pressures up to 25 MPa. The Starling and Han (BWRS), and The five-parameter Modified Toscani-Swarcz (MTS) equations were used to correlate them. The experimental density data were compared with those from literature, and with the calculated values obtained from available equations for these n-alkanes.  相似文献   

14.
(Liquid + liquid) equilibrium (LLE) data for the ternary system of (water + butyric acid + oleyl alcohol) at T = (298.15, 308.15, and 318.15) K are reported. Complete phase diagrams were obtained by determining solubility and the tie-line data. The reliability of the experimental tie lines was confirmed by using Othmer-Tobias correlation. The UNIFAC method was used to predict the phase equilibrium data. The phase diagrams for the ternary mixtures including both the experimental and correlated tie lines are presented. Distribution coefficients and separation factors were evaluated for the immiscibility region. A comparison of the solvent extracting capability was made with respect to distribution coefficients, separation factors, and solvent-free selectivity bases for T = (298.15, 308.15, and 318.15) K. It is concluded that oleyl alcohol may serve as an adequate solvent to extract butyric acid from its dilute aqueous solutions.  相似文献   

15.
(Liquid + liquid) equilibrium (LLE) data for the {water + acetic acid + dibasic esters mixture (dimethyl adipate + dimethyl glutarate + dimethyl succinate)} system have been determined experimentally at T = (298.2, 308.2, and 318.2) K. Complete phase diagrams were obtained by determining solubility curve and tie-line data. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. The UNIFAC model was used to predict the phase equilibrium in the system using the interaction parameters determined from experimental data between CH2, CH3COO, CH3, COOH, and H2O functional groups. Distribution coefficients and separation factors were compared with previous studies.  相似文献   

16.
Liquid–liquid equilibrium (LLE) data for the quaternary systems of [water + acetic acid + mixed solvent (dipropyl ether + diisopropyl ether)] were measured at 298.2 K and atmospheric pressure, using various compositions of mixed solvent. Binodal curves and tie-lines for the quaternary systems have been determined in order to investigate the effect of solvent mixture, dipropyl ether (DPE) and diisopropyl ether (IPE), on extracting acetic acid from aqueous solution. A comparison of the extracting capabilities of the mixed solvents was made with respect to distribution coefficients, separation factors, and solvent free selectivity bases. Reliability of the data was confirmed by using the Othmer–Tobias and Hand plots. The tie-lines were also correlated using the UNIFAC model. The average root-mean-square deviations between the observed and calculated mass fractions for the studied systems were in the range of 10–14%.  相似文献   

17.
(Liquid + liquid) equilibrium (LLE) data for (water + propionic acid + cyclohexanone) were measured under atmospheric pressure and at T = (293.2, 298.2 and 303.2) K. Phase diagrams were obtained by determining solubility and tie-line data. The LLE data of the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated over the immiscibility regions.  相似文献   

18.
Bubble point temperatures at 95.5 kPa, over the entire composition range, are measured for the binary mixtures formed by m-cresol with: methanol, ethanol, 1-propanol, 2-propanol, and n-, iso-, sec-, and tert-butanols - using a Swietoslawski-type ebulliometer. The liquid phase composition - bubble point temperature measurements are well represented by the Wilson model. (Vapor + liquid) equilibria predicted from the model are presented.  相似文献   

19.
Water activity measurements have been carried out on the aqueous solutions of both tri-potassium citrate (K3Cit) and polypropylene oxide (PPO) 400 + K3Cit over a range of temperatures at atmospheric pressure. The data obtained is used to calculate the vapor pressure as a function of temperature and concentration. The effect of temperature on the constant water activity lines of aqueous PPO + K3Cit systems has been studied and it was found that, at higher temperatures the higher concentration of polymer is in equilibrium with a certain concentration of the salt. Also it was found that the vapor pressure depression for an aqueous PPO + K3Cit system is more than the sum of those for the corresponding binary solutions. The experimental water activities have been correlated successfully with the segment-based local composition Wilson model. The agreement between the correlation and the experimental data is good.  相似文献   

20.
Tie line data of the ternary system {methanol + isooctane + cyclohexane} were obtained at T = 303.15 K. A quaternary system containing these three compounds and benzene was also studied at the same temperature, while data for {methanol + benzene + cyclohexane} and {methanol + benzene + isooctane} were taken from literature. In order to obtain the binodal surface of the quaternary system, four quaternary sectional planes with several cyclohexane/isooctane ratios were studied. The distribution of benzene between both phases was also analysed. Ternary experimental results were correlated with the UNIQUAC and NRTL equations and compared with predictions using the UNIFAC group contribution method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号