首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Labaki  M.  Lamonier  J.-F.  Siffert  S.  Zhilinskaya  E. A.  Aboukaïs  A. 《Kinetics and Catalysis》2004,45(2):227-233
The catalytic oxidation of propene and toluene has been investigated on pure ZrO2, pure Y2O3, and ZrO2 doped with 1, 5, and 10 mol % Y2O3 in the presence or absence of copper (0.5, 1, and 5 wt%). A synergetic effect has been detected since ZrO2 and Y2O3 exhibit significantly lower activities than the mixed oxides. The higher surface areas, related to structural change from mononoclinic (ZrO2) to tetragonal (ZrO2–;;Y2O3), partly explained the higher activity of ZrO2–;;Y2O3. However, it has been shown that the number of anionic vacancies, created by the substitution of Zr4+ by Y3+, in yttria-stabilized zirconia solids depends on the yttrium contents. Their effect on propene and toluene oxidation activity is significant. The anionic vacancies should induce better activity of the ZrO2—5 mol % Y2O3 catalyst with or without copper, which presents the higher number of Zr3+ species. This support should favor the formation of CuO particles, which should be the most active catalytic sites in the studied reaction.  相似文献   

2.
The effect of manganese on the dispersion, reduction behavior and active states of surface of supported copper oxide catalysts have been investigated by XRD, temperature‐programmed reduction and XPS. The activity of methanol synthesis from CO2/H2 was also investigated. The catalytic activity over CuO‐MnOx/γ‐Al2O3 catalyst for CO2 hydrogenation is higher than that of CuO/γ‐Al2O3. The adding of manganese is beneficial in enhancing the dispersion of the supported copper oxide and make the TPR peak of the CuO‐MnKx/γ‐Al2O3 catalyst different from the individual supported copper and manganese oxide catalysts, which indicates that there exists strong interaction between the copper and manganese oxide. For the CuO/γ‐Al2O3 catalyst there are two reducible copper oxide species; α and β peaks are attributed to the reduction of highly dispersed copper oxide species and bulk CuO species, respectively. For the CuO‐MnOx/γ‐Al2O3 catalyst, four reduction peaks are observed, α peak is attributed to the dispersed copper oxide species; β peak is ascribed to the bulk CuO; γ peak is attributed to the reduction of high dispersed CuO interacting with manganese; δ peak may be the reduction of the manganese oxide interacting with copper oxide. XPS results show that Cu+ mostly existed on the working surface of the Cu‐Mn/γ‐Al2O3 catalysts. The activity was promoted by Cu with positive charge which was formed by means of long path exchange function between Cu? O? Mn. These results indicate that there is synergistic interaction between the copper and manganese oxide, which is responsible for the high activity of CO2 hydrogenation.  相似文献   

3.
The selective catalytic reduction of NO with ammonia in the presence of oxygen has been carried out on Cu-loaded dealuminated Y zeolite catalysts. Copper was introduced by the usual ion-exchange procedure with an aqueous solution of cupric acetate. On deeply dealuminated USY zeolites, Cu2+ was supported in the amount larger than 2Cu/Al = 2, resulting in the formation of CuO fine particles in addition to the isolated and dimer Cu2+ species. The specific catalytic activity per surface copper on the CuO particles was very high compared with these Cu2+ species. NO adsorption measurement revealed the higher dispersion of CuO on the deeply dealuminated USY than on SiO2, which made Cu/USY a better catalyst for the reduction of NO. The reaction intermediates were investigated through the IR spectra of adsorbed species.  相似文献   

4.
《Mendeleev Communications》2022,32(4):478-481
New copper-containing organosilicon hybrid materials were synthesized by the reaction of branched polymethyl- silsesquioxane with copper nanoparticles prepared by the metal-vapor synthesis. Hybrid materials showed a high activity in the catalytic olefination of p-chlorobenzaldehyde hydrazone with polyhaloalkanes such as CBrCl3, CBr4 and CF CBr to afford the corresponding halostyrenes in the yields above 80%. The structure and composition of the prepared nanocomposites were studied by X-ray using synchrotron radiation to show that the active sites of the catalysts are mixed copper(I)–copper(II) oxides (Cu–Cu2O–CuO) in nature.  相似文献   

5.
The selective catalytic reduction of NO with ammonia in the presence of oxygen has been carried out on Cu-loaded dealuminated Y zeolite catalysts. Copper was introduced by the usual ion-exchange procedure with an aqueous solution of cupric acetate. On deeply dealuminated USY zeolites, Cu2+ was supported in the amount larger than 2Cu/Al=2, resulting in the formation of CuO fine particles in addition to the isolated and dimer Cu2+ species. The specific catalytic activity per surface copper on the CuO particles was very high compared with these Cu2+ species. NO adsorption measurement revealed the higher dispersion of CuO on the deeply dealuminated USY than on SiO2, which made Cu/USY a better catalyst for the reduction of NO. The reaction intermediates were investigated through the IR spectra of adsorbed species.  相似文献   

6.
《中国化学快报》2020,31(5):1201-1206
The effective valuation of catalyst supports in the catalytic oxidation makes the contribution to understand the support effect of great interest. Here, the role of active substrate in the performance and stability of Cu-Fe-Co ternary oxides was studied towards the complete catalytic oxidation of CO. The Cu-Fe-Co oxide thin films were deposited on copper grid mesh (CUGM) using one-step pulsed-spray evaporation chemical vapor deposition method. Crystalline structure and morphology analyses revealed nano-crystallite sizes and dome-top-like morphology. Synergistic effects between Cu, Fe and Co, which affect the surface Cu2+, Fe3+, Co3+ and chemisorbed oxygen species (O2− and OH) of thin films over the active support and thus result in better reducibility. The thin film catalysts supported on CUGM exhibited attractive catalytic activity compared to the ternary oxides supported on inert grid mesh at a high gas hourly space velocity. Moreover, the stability in time-on-stream of the ternary oxides on CUGM was evaluated in the CO oxidation for 30 h. The adopted deposition strategy of ternary oxides on CUGM presents an excessive amount of adsorbed active oxygen species that play an important role in the complete CO oxidation. The catalysts supported on CUGM showed better catalytic conversion than that on inert grid mesh and some literature-reported noble metal oxides as well as transition metal oxides counterparts, revealing the beneficial effect of the CUGM support in the improvement of the catalytic performance.  相似文献   

7.
以FeCrAl合金薄片为基底,Al2O3浆料为过渡胶体,不同摩尔比的Cu、Co为催化活性组分,制备了一系列CuxCo1-x/Al2O3/FeCrAl(x=0-1)新型整体式催化剂.采用X射线粉末衍射(XRD),扫描电子显微镜(SEM),X光电子能谱(XPS)和程序升温还原(TPR)等手段对催化剂的结构进行了表征.在微型固定床反应器上评价了催化剂的催化甲苯燃烧性能.研究结果表明:在所制备的整体式催化剂上,当Cu含量比较低时,形成了Cu-Co-O固溶体;当Cu含量比较高时,可以测得CuO的衍射峰.催化剂表面颗粒大小和形貌与Cu、Co摩尔比密切相关.在催化剂表面,Co以Co2+和Co3+价态存在,而Cu主要以Cu2+价态存在.催化剂中的Cu可以改善Co的氧化还原性,从而有利于催化剂活性的提高.在所制备的催化剂中,Cu0.5Co0.5/Al2O3/FeCrAl催化剂具有最好的活性,甲苯在374oC可以完全催化燃烧消除.  相似文献   

8.
Cu/活性炭催化剂:水合肼还原制备及催化甲醇氧化羰基化   总被引:1,自引:0,他引:1  
以活性炭为载体,水合肼为还原剂制备了负载型Cu/活性炭催化剂,考察了水合肼/硝酸铜物质的量的比对催化甲醇气相氧化羰基化性能的影响,并采用XRD、XPS、H2-TPR和SEM等手段对催化剂进行了表征。结果表明,不加入还原剂水合肼时,催化剂中仅有CuO;随着水合肼/硝酸铜物质的量的比的增加,二价铜逐步被还原为Cu2O和/或单质Cu0,未被还原的Cu(OH)2在催化剂干燥过程中分解形成分散态CuO存在于催化剂表面。当水合肼/硝酸铜物质的量的比为0.75时,催化剂的催化性能最好,碳酸二甲酯的时空收率为120.62 mg.(g.h)-1,选择性为74.51%,甲醇转化率达到3.88%。在93 h反应时间内,催化剂都保持了较高的反应活性和选择性。此时铜物种以Cu2O和分散态CuO为主,Cu2O是主要的活性物种。  相似文献   

9.
The effect of heat-treatment on 10 wt% CuO-ZnAl2O4 catalytic activity in methylation of phenol and the degree of interaction of CuO active phase with support spinel phase were investigated. The CuO-ZnAl2O4 sample was subjected to heat-treatment up to 1000°C. The thermal products were characterized by X-ray diffraction (XRD) analysis, nitrogen adsorption-desorption at -196°C and temperature-programmed desorption (TPD-MS) of CO2. Additionally, the reducibility of copper phases was investigated by temperature-programmed reduction (TPR). XRD patterns of the fresh catalyst sample (calcined at 600°C) indicated the presence of a mixture of poorly crystallized CuO and ZnAl2O4 spinel phase. The presence of two reducible copper species has been found on fresh CuO-ZnAl2O4 catalyst by TPR analysis. After subsequent calcinations in air at elevated temperatures some CuO disappeared with appearance of CuAl2O4 phase. The catalytic results revealed that the CuO addition to ZnAl2O4 increases the activity in ortho-methylation of phenol. Subsequent heat-treatment up to 900°C causes partial deactivation of copper centers, which is the result of transformation of CuO to the inactive CuAl2O4 phase.  相似文献   

10.
《Comptes Rendus Chimie》2015,18(3):351-357
A series of Mg(Cu)–AlFe mixed oxides derived from hydrotalcite-like compounds has been prepared. These solids were characterized by various physicochemical methods and their catalytic performances were tested towards the catalytic oxidation of propene and the simultaneous elimination of propene and NOx. X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirmed the formation of the hydrotalcite structure for all the solids, except for Cu4AlFe HT, for which a mixture of the hydrotalcite and the malachite phases is observed. The XRD study of the calcined samples revealed the existence of metal oxides and spinels of types MgO, CuO,
-Fe2O3 or/and Fe3O4, MgFe2O4 and CuFe2O4. During propene oxidation, it was shown that the increase in the copper content enhanced the activity of the solids. However, Cu2Mg2AlFe 500, with the highest amount of surface copper species, exhibited the best activity towards the simultaneous elimination of propene and NO. Indeed surface Cu species are the active sites, while bulk Cu species could provide the adsorption sites for nitrogen species.  相似文献   

11.
A series of MnOx modified cobalt oxides with different atomic molar ratios of Mn/(Mn?+?Co) were prepared by a soft reactive grinding route and investigated for CO preferential oxidation in H2. It was found that as-prepared Mn-doped cobalt oxides exhibited superior activity compared to the single constituted oxides, other Mn–Co–O mixed oxides synthesized by solution-based route, and other grinding-derived mixed metal oxides M–Co–O (M?=?Zn, Ni, Cu, Fe). The grinding-derived MnCo10 catalyst with Mn/(Mn?+?Co) molar ration of 10% showed the best CO oxidation activity and higher selectivity at low temperature. The surface richness of Co3+ was not found as increasing the Mn molar ratio in the present work. However, the incoporation of MnOx with proper amount into Co3O4 could produce high surface area, high structure defects, and rich surface active oxygen species, while the ability to supply the active oxygen species was suggested to play the crucial role in promoting the catalytic performance of Mn–Co–O mixed oxides.  相似文献   

12.
The construction of a heterogeneous nanocatalyst with outstanding catalytic performance via an environmentally benign and cost-effective synthetic category has long been one of the challenges in nanotechnology. Herein, we synthesized highly efficient and low-cost mesoporous morphology-dependent CuO/CeO2-Rods and CuO/CeO2-Cubes catalysts by employing a green and multifunctional polyphenolic compound (tannic acid) as the stabilizer and chelating agent for 4-nitrophenol (4-NP) reduction reaction. The CuO/CeO2-Rods exhibited excellent performance, of which the activity was 3.2 times higher than that of CuO/CeO2-Cubes. This can be connected with the higher density of oxygen vacancy on CeO2-Rods (110) than CeO2-Cubes (100), the oxygen vacancy favors anchoring CuO species on the CeO2 support, which promotes the strong interaction between finely dispersed CuO and CeO2-Rods at the interfacial positions and facilitates the electron transfer from BH4 to 4-NP. The synergistic catalytic mechanism illustrated that 4-NP molecules preferentially adsorbed on the CeO2, while H2 from BH4 dissociated over CuO to form highly active H* species, contributing to achieving efficient hydrogenation of 4-NP. This study is expected to shed light on designing and synthesizing cost-effective and high-performance nanocatalysts through a greener synthetic method for the areas of catalysis, nanomaterial science and engineering, and chemical synthesis.  相似文献   

13.
《Comptes Rendus Chimie》2016,19(10):1254-1265
Recent progress in catalytic direct NO decomposition is overviewed, focusing on metal oxide-based catalysts. Since the discovery of the Cu-ZSM-5 catalyst in the early 1990s, various kinds of catalytic materials such as perovskites, C-type cubic rare earth oxides, and alkaline earth based oxides have been reported to effectively catalyze direct NO decomposition. Although the activities of conventional catalysts are poor in the presence of coexisting O2 and CO2, some of the catalysts reviewed in this article possess significant tolerance toward these coexisting gases. The active sites for direct NO decomposition are different depending on the types of metal oxide-based catalysts. In the case of perovskite type oxides, oxide anion vacancies act as catalytically active sites on which NO molecules are adsorbed. C-type cubic rare earth oxides contain oxide anion vacancies with large cavity space, enabling easy access of NO molecules and their subsequent adsorption. Surface basic sites on alkaline earth based oxides participate in NO decomposition as active sites on which NO molecules are adsorbed as NO2 species. The reaction mechanisms of direct NO decomposition are also discussed.  相似文献   

14.
The synthesis of CuO species highly dispersed in MxOy–Al2O3 (M = Ba, Mg, K or La) basic supports was studied, and the catalytic proprieties of the solids in glycerol conversion to bioproducts were subsequently evaluated. A correlation between the copper oxide/catalytic support structure, specific surface area/porosity and the basicity (strength and amount of basic sites) of MxOy–Al2O3 (M = Ba, Mg, K or La) supports were observed through the following characterization techniques: XRD (structure), N2 adsorption/desorption isotherms (surface area/porosity) and microcalorimetry of CO2 adsorption (basicity). The XRD results of the different supports indicated that the basic species (BaO, MgO, K2O or La2O3) are highly dispersed in the Al2O3 matrix. The XRD patterns of the Ba and K-containing solids combined with copper present a CuO and Al2O3 formation; however, an isolated CuO phase for the Mg and La-based catalysts is not observed, demonstrating that Cu species are highly dispersed in basic support. N2 physisorption isotherms ascribed that most of the samples are mesoporous with a surface area between 26 and 178 m2 g?1, depending on the solid composition. Microcalorimetry of CO2 adsorption presented the following basic strength using the first points of the adsorption heat: 10MgAl > 10LaAl > 10KAl > 10BaAl for the sample without copper and 5CuMgAl > 5CuKAl > 5CuLaAl > 5CuBaAl for the materials with Cu. The amount of basic site varies greatly depending on the type of basic metal used. The different materials without copper are practically inactive at the end of the reaction. However, the Cu-based solids are active and selective for the conversion of glycerol to acetol. The initial glycerol conversion and the catalyst stability are related to basic strength and amount of basic sites, respectively.  相似文献   

15.
分别以NaOH、Na2CO3、NaHCO3为沉淀剂,采用共沉淀法制备了Cu:Zn摩尔比为2:1的CuO-ZnO催化剂,利用氢气程序升温还原(H2-TPR)、热重(TG)、X射线衍射(XRD)及拉曼光谱(Raman)等技术对催化剂进行了表征,结合甲醛乙炔化活性评价,研究了沉淀剂对催化剂结构及催化性能的影响.结果表明,不同沉淀剂对催化剂中活性组分分散度有较大影响,进而在甲醛乙炔化合成1,4-丁炔二醇反应中表现出不同的催化活性.以Na2CO3为沉淀剂制备的催化剂中形成CuO-ZnO固溶体,提高了CuO的分散度及Cu+在还原性气氛下的稳定性,经活化后可生成较多的活性物种炔化亚铜,表现出最佳的炔化反应活性与1,4-丁炔二醇选择性.  相似文献   

16.
The excellent photocatalytic hydrogenation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) with NaBH4 in the aqueous medium is still a big challenge. Herein, we report a facile one-pot evaporation-induced self-assembly (EISA) method to synthesize a series of CuO/TiO2 nanocomposites. The as-synthesized CuO/TiO2 photocatalysts exhibit remarkable catalytic activity under direct sunlight in selective hydrogenation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) due to the synergistic interaction of guest copper nanoparticles with host titanium dioxide (TiO2) species. Especially, 5 wt% CuO/TiO2 nanocomposite revealed superior reaction rate constant (k) value (0.306 min−1) when compared to 3 wt% CuO/TiO2 (0.192 min−1) and 7 wt% CuO/TiO2 (0.240 min−1). Moreover, several characterization techniques (XRD, TEM, N2 adsorption–desorption isotherm, DRS, and XPS) were executed to deeply investigate the effect of copper content on the bulk and interfacial properties of the catalysts. The characterization results proved that the superior photocatalytic hydrogenation over 5 wt% CuO/TiO2 catalyst can be ascribed to moderate CuO loading as well as even dispersion of CuO species on the surface of active TiO2 host, which can largely improve the light absorption ability within visible light region. Besides, the 5 wt% CuO/TiO2 catalyst exhibits remarkable recyclability and durability, retaining its superior activity (above 95%) up to several repeating cycles, proving its practical applicability for hydrogenation reactions at domestic and industrial levels.  相似文献   

17.
The catalytic activity of the CuO/ZrO2, CoO/ZrO2, Fe2O3/ZrO2, and CuO/(CoO, Fe2O3)/ZrO2 systems in the reaction of selective CO oxidation in the presence of hydrogen was studied at 20–450°C over the oxide concentration range of 2.5–10 wt % on the surface of ZrO2. The conversion of CO on the CoO/ZrO2 systems was almost independent of the concentration of CoO: 88 or 90% for 2.5 or 10% CoO, respectively. TPR data allowed us to relate the catalytic activity of CoO/ZrO2 to Co-O-Zr clusters, the amount of which was almost constant over the test range of CoO concentrations. The conversion of CO on 2.5% CuO/ZrO2 was 32% (190°C) or 62–66% on 5–10% CuO/ZrO2 (170°C). According to TPR data, clusters like Cu-O-Zr occurred on the surface of ZrO2, and the amount of these clusters reached a maximum upon supporting 5% CuO. The catalytic properties of 5% CuO/5% CoO/ZrO2 and 5% CoO/5% CuO/ZrO2 samples were identical to those of 5% CuO/ZrO2 samples. It is likely that the formation of active reaction sites upon consecutively supporting the oxides occurred on the same surface sites of ZrO2. In this case, Co and Cu oxides competed for cluster formation, and the copper cation can displace the cobalt cation from the formed clusters. The Fe2O3 samples were inactive; a maximum conversion of 34% (290°C) was observed on 10% Fe2O3/ZrO2. The catalytic properties of CuO/Fe2O3/ZrO2 were also identical to those of CuO/ZrO2, and they depended on the presence of Cu-O-Zr clusters on the surface.  相似文献   

18.
Selective production of hydrogen by oxidative steam reforming of methanol (OSRM) was studied over Cu/SiO2 catalyst using fixed bed flow reactor. Textural and structural properties of the catalyst were analyzed by various instrumental methods. TPR analysis illustrates that the reduction temperature peak was observed between 510?K and 532?K at various copper loadings and calcination temperatures and the peaks shifted to higher temperature with increasing copper loading and calcination temperature. The XRD and XPS analysis demonstrates that the copper existed in different oxidation states at different conditions: Cu2O, Cu0, CuO and Cu(OH)2 in uncalcined sample; CuO in calcined sample: Cu2O and metallic Cu after reduction at 600?K and Cu0 and CuO after catalytic test. TEM analysis reveals that at various copper loadings, the copper particle size is in the range between 3.0?nm and 3.8?nm. The Cu particle size after catalytic test increased from 3.6 to 4.8?nm, which is due to the formation of oxides of copper as evidenced from XRD and XPS analysis. The catalytic performance at various Cu loadings shows that with increasing Cu loading from 4.7 to 17.3?wt%, the activity increases and thereafter it decreases. Effect of calcination shows that the sample calcined at 673?K exhibited high activity. The O2/CH3OH and H2O/CH3OH molar ratios play important role in reaction rate and product distribution. The optimum molar ratios of O2/CH3OH and H2O/CH3OH are 0.25 and 0.1, respectively. When the reaction temperature varied from 473 to 548?K, the methanol conversion and H2 production rate are in the range of 21.9–97.5% and 1.2–300.9?mmol?kg?1?s?1, respectively. The CO selectivity is negligible at these temperatures. Under the optimum conditions (17.3?wt%, Cu/SiO2; calcination temperature 673?K; 0.25 O2/CH3OH molar ratio, 0.5 H2O/CH3OH molar ratio and reaction temperature 548?K), the maximum hydrogen yield obtained was 2.45?mol of hydrogen per mole of methanol. The time on stream stability test showed that the Cu/SiO2 catalyst is quite stable for 48?h.  相似文献   

19.
Alcohol/nonionic polymeric surfactant assisted, morphologically controlled synthesis is developed for micro-/nanostructured crystalline copper oxide. Materials were characterized by a complementary combination of X-ray diffraction (XRD), nitrogen sorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) and UV-visible spectroscopy. XRD and FT-IR confirm the formation of a mixture of Cu(OH)2 and CuO after 0.5 h of hydrothermal treatment and pure CuO after 2 h of hydrothermal treatment. The formation mechanisms were proposed based on the SEM and TEM analysis, which show that both, alcohol/polymeric surfactant and hydrothermal time play an important role in tuning the morphology and structure of CuO. Surface area of metal oxides depends on the alcohols and the nonionic polymeric surfactants used in the synthesis. Surface area of CuO synthesized using methanol was found to be the highest. The catalytic activity of as-synthesized CuO was demonstrated by using three-component coupling reaction in the synthesis of propargylamine and catalytic oxidation of methylene blue in the presence of hydrogen peroxide. Among the CuO prepared in this study, the CuO synthesized using methanol exhibited better catalytic activity (propargylamine yield (64.5%)) and the highest rate of methylene blue degradation (13 × 10−3 min−1).  相似文献   

20.
MgCuAl layered double hydroxides (LDHs) with a hydrotalcite like structure containing different proportions of Mg2+ and Cu2+ cations have been prepared. Thermogravimetry and X-ray diffraction data indicated that the transformation of LDH into mixed oxides is effective after calcination at 723 K, irrespective of the composition. The acid-base properties of these mixed oxides have been investigated using adsorption microcalorimetry and X-ray photoelectron spectroscopy with NH3 (for acidity) and SO2 (for basicity) as probe molecules. Their catalytic behaviour for the conversion of cyclohexanol has been tested. The acid-base properties and the selectivity of catalysts has been related to their composition. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号