首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multi-walled carbon nanotubes (MWCNTs) functionalized by cobalt nanoparticles were obtained using a single step chemical deposition method in an ultrasonic bath. The composite material was characterized using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The electroactivity of the cobalt-functionalized MWCNTs was assessed in respect to the electrooxidation of paracetamol (PAR) and dopamine (DA). It was found that the carbon nanotube supported cobalt nanoparticles have significantly higher catalytic properties. The proposed electrode has been applied for the simultaneous determination of PAR and DA. The modified electrode could resolve the overlapped voltammetric waves of PAR and DA into two well-defined voltammetric peaks with peak to peak separation of about 203 mV. On the other hand, the presence of potential drug interfering compounds AA and UA did not affect the voltammetric responses of PAR and DA. The current of oxidation peaks showed a linear dependent on the concentrations of PAR and DA in the range of 5.2 × 10−9–4.5 × 10−7 M (R2 = 0.9987) and 5.0 × 10−8–3.0 × 10−6 M (R2 = 0.9999), respectively. The detection limits of 1.0 × 10−9 M and 1.5 × 10−8 M were obtained for PAR and DA, respectively. The proposed electrode showed good stability (peak current change: 4.9% with and RSD of 2.6% for PAR; 5.5% with and RSD of 3.0% for DA over 3 weeks), reproducibility (RSD 2.3% for PAR and RSD 1.5% for DA), repeatability (RSD 2.25% for PAR and RSD 2.50% for DA) and high recovery (99.7% with an RSD of 1.3% for PAR; 100.8% with an RSD of 1.8% for DA). The proposed method was successfully applied to the determination of PAR and DA in pharmaceuticals.  相似文献   

2.
Poachanee Norfun 《Talanta》2010,82(1):202-207
A reverse flow injection analysis (rFIA) spectrophotometric method has been developed for the determination of aluminium(III). The method was based on the reaction of Al(III), quercetin and cetyltrimethylammonium bromide (CTAB), yielding a yellow colored complex in an acetate buffer medium (pH 5.5) with absorption maximum at 428 nm. The rFIA parameters that influence the FIA peak height have been optimized in order to obtain the best sensitivity and minimum reagent consumption. A linear relationship between the relative peak height and Al(III) concentrations were obtained over the concentration range of 0.02-0.50 mg L−1 with a correlation coefficient of 0.9998. The limit of detection (LOD, defined as 3σ) and limit of quantification (LOQ, defined as 10σ) were 0.007 and 0.024 mg L−1, respectively. The repeatability was 1.10% (n = 11) for 0.2 mg L−1 Al(III). The proposed method was applied to the determination of Al(III) in tap water samples with a sampling rate of 60 h−1. Results obtained were in good agreement with those obtained by the official ICP-MS method at the 95% confidence level.  相似文献   

3.
Keliana D. Santos 《Talanta》2010,80(5):1999-109
A boron-doped diamond (BDD) electrode was used for the electroanalytical determination of estriol hormone in a pharmaceutical product and a urine sample taken during pregnancy by square-wave voltammetry. The optimized experimental conditions were: (1) a supporting electrolyte solution of NaOH at a pH of 12.0, and (2) a frequency of 20 Hz, a pulse height of 30 mV and a scan increment of 2 mV (for the square-wave parameters). The analytical curve was linear in the concentration range of 2.0 × 10−7 to 2.0 × 10−5 mol L−1 (r = 0.9994), with a detection limit of 1.7 × 10−7 mol L−1 and quantification limit of 8.5 × 10−7 mol L−1. Recoveries of estriol were in the range of 98.6-101.0%, for the pharmaceutical sample, and 100.2-103.4% for the urine sample, indicating no significant matrix interference effects on the analytical results. The accuracy of the electroanalytical methodology proposed was compared to that of the radioimmunoassay method. The values for the relative error between the proposed and standard methods were −7.29% for the determination of estriol in the commercial product and −4.98% in a urine sample taken during pregnancy. The results obtained suggest a reliable and interesting alternative method for electroanalytical determination of estriol in pharmaceutical products and urine samples taken during pregnancy using a boron-doped diamond electrode.  相似文献   

4.
A new method for the pretreatment of screen-printed carbon electrodes (SPCEs) by two successive steps was proposed. In step one, fresh SPCEs were soaked into NaOH with high concentration (e.g. 3 M) for tens to hundreds of minutes, and the resulted electrodes were called as SPCE-I. In step two, SPCE-I were pre-anodized in low concentration of NaOH, which were designated as SPCE-II. The pretreated electrodes showed remarkable enhancement in heterogeneous electron transfer rate constant (k0) increased from 1.6 × 10−4 cm s−1 at the fresh SPCE to 1.1 × 10−2 cm s−1 at SPCE-I for Fe(CN)63−/4− couple. The peak to peak separation (ΔEp) in cyclic voltammetry was reduced from ca. 480 to 84 mV, indicating that the electrochemical reversibility was greatly promoted, possibly due to the removing of polymers/oil binder from the electrode surfaces. The electroactive area (Aea) of the electrode was increased by a factor of 17 after pretreatment in step one. Further analysis by the electrochemical impedance method showed that the electron transfer resistance (Rct) decreased from ca. 2100 to 1.4 Ω. These pretreated electrodes, especially SPCE-II, exhibited excellent electrocatalytic behavior for the redox of dopamine (DA). Interference from ascorbic acid (AA) in the detection of DA at SPCE-II could be effectively eliminated due to the anodic peak separation (190 mV) between DA and AA, which resulted from the functionalization of the electrode surface in the pretreatment of step two. Under optimum conditions, current responses to DA were linearly changed in two concentration intervals, one was from 3.0 × 10−7 to 9.8 × 10−6 M, and the other was from 9.8 × 10−6 to 3.3 × 10−4 M. The detection limit for DA was down to 1.0 × 10−7 M.  相似文献   

5.
An ionic liquid 1-butylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) was used as the substrate electrode and a poly(methylene blue) (PMB) functionalized graphene (GR) composite film was co-electrodeposited on CILE surface by cyclic voltammetry. The PMB–GR/CILE exhibited better electrochemical performances with higher conductivity and lower electron transfer resistance. Electrochemical behavior of dopamine (DA) was further investigated by cyclic voltammetry and a pair of well-defined redox peaks appeared with the peak-to-peak separation (ΔEp) as 0.058 V in 0.1 mol L−1 pH 6.0 phosphate buffer solution, which proved a fast quasi-reversible electron transfer process on the modified electrode. Electrochemical parameters of DA on PMB–GR/CILE were calculated with the electron transfer number as 1.83, the charge transfer coefficients as 0.70, the apparent heterogeneous electron transfer rate constant as 1.72 s−1 and the diffusional coefficient (D) as 3.45 × 10−4 cm2 s−1, respectively. Under the optimal conditions with differential pulse voltammetric measurement, the linear relationship between the oxidation peak current of DA and its concentration was obtained in the range from 0.02 to 800.0 μmol L−1 with the detection limit as 5.6 nmol L−1 (3σ). The coexisting substances exhibited no interference and PMB–GR/CILE was applied to the detection of DA injection samples and human urine samples with satisfactory results.  相似文献   

6.
A solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica (SiAt-SPCPE) was applied to Ni2+ determination in commercial ethanol fuel samples. The proposed method comprised four steps: (1) Ni2+ preconcentration at open circuit potential directly in the ethanol fuel sample, (2) transference of the electrode to an electrochemical cell containing DMG, (3) differential pulse voltammogram registering and (4) surface regeneration by polishing the electrode. The proposed method combines the high Ni2+ adsorption capacity presented by 2-aminothiazole organofunctionalized silica with the electrochemical properties of the Ni(DMG)2 complex, whose electrochemical reduction provides the analytical signal.All experimental parameters involved in the proposed method were optimized. Using a preconcentration time of 20 min, it was obtained a linear range from 7.5 × 10−9 to 1.0 × 10−6 mol L−1 with detection limit of 2.0 × 10−9 mol L−1. Recovery values between 96.5 and 102.4% were obtained for commercial samples spiked with 1.0 μmol L−1 Ni2+ and the developed electrode was totally stable in ethanolic solutions. The contents of Ni2+ found in the commercial samples using the proposed method were compared to those obtained by graphite furnace atomic absorption spectroscopy by using the F- and t-test. Neither the F- nor t-values exceeded the critical values at 95% confidence level, confirming that there are not statistical differences between the results obtained by both methods. These results indicate that the developed electrode can be successfully employed to reliable Ni2+ determination in commercial ethanol fuel samples without any sample pretreatment or dilution step.  相似文献   

7.
A FTIR methodology has been developed for the simultaneous determination of Cypermethrin and Chlorpyrifos in pesticide commercially available formulations. The method involves the extraction of both active principles with CHCl3 and direct measurement of the peak area values between 1747 and 1737 cm−1 corrected with a baseline defined at 2000 cm−1 for Cypermethrin and peak height values established at 1549 cm−1 corrected using a baseline situated at 1650 cm−1 for Chlorpyrifos.The limits of detection achieved were of the order of 0.7 and 0.4% (w/w), and the relative standard deviation 0.4 and 0.2% for Cypermethrin and Chlorpyrifos, respectively. The developed procedure provided statistically comparable results with those obtained by HPLC, for a series of commercial samples, which validated the FTIR method. The procedure developed reduces organic solvent consumption, per sample preparation, from 51 ml CH3CN required for HPLC to 2.5 ml CHCl3, and reduces waste generation also increasing the sample measurement frequency, from 3 to 30 samples/h, as compared with the HPLC-UV reference method.  相似文献   

8.
Potentiometric FIA titrations were performed to determine enzyme activities of lipase type B from Candida antarctica, CAL-B. Two substrates, triacetin and tributyrin were hydrolyzed in phosphate buffer solutions, and the concentration change of the base component of the buffer was titrated in a carrier solution containing hydrochloric acid and potassium chloride. The system was calibrated with butyric acid and acetic acid, respectively. FIA titration peaks were evaluated with respect to peak height and peak area. Butyric acid and acetic acid could be titrated in the buffer solution from 3 × 10−3 mol L−1 to 0.1 mol L−1. The detection limit of enzyme activity was determined to be 0.07 U mL−1 (15 min reaction time) and the minimum activity was calculated to be 0.035 units corresponding to 35 nmol min−1. The specific activities of lipase B for the hydrolysis of tributyrin and triacetin were determined as 16 ± 2 U mg−1 and 2 ± 0.2 U mg−1 (per mg commercial lipase preparation), respectively.  相似文献   

9.
A simple and reliable method for simultaneous electrochemical determination of ascorbic acid (AA) and dopamine (DA) is presented in this work. It was based on the use of the cationic surfactant cetylpyridinium chloride (CPC) that enables the separation of the oxidation peaks potential of AA and DA. Cyclic voltammetry (CV) as well as pulse differential voltammetry (PDV) were used in order to verify the voltammetric behaviour in micellar media. In the cationic surfactant CPC, a remarkable electrostatic interaction is established with negatively charged AA, as a consequence, the oxidation peak potential shifted toward less positive potential and the peak current increased. On the other hand, the positively charged DA is repelled from the electrode surface and the oxidation peak potential shifts toward more positive potential in comparison to the bare electrode. Therefore, the common overlapped oxidation peaks of AA and DA can be circumventing by using CPC. Parameter that affects the Epa and Ipa such as CPC concentration and pH were studied. Under optimised conditions, the method presented a linear response to AA and DA in the concentration range from 5 to 75 μmol L−1 and 10 to 100 μmol L−1, respectively. The proposed method was successfully applied to the simultaneous determination of AA and DA in dopamine hydrochloride injection (DHI) samples spiked with AA.  相似文献   

10.
Titanium phosphate grafted on the surface of silica gel (devoted briefly as Si-TiPH) was synthesized and used as bulk modifier to fabricate a renewable three-dimensional chemically modified electrode. The Si-TiPH bulk modified carbon paste electrode was used for the selective determination of dopamine (DA) in the presence of ascorbic acid (AA). The modified electrode offers an excellent and stable response for the determination of DA in the presence of AA. The differential pulse voltammetry peak current was found to be linear with the DA concentration in the range 2 × 10−7 to 1 × 10−6 and 2 × 10−6 to 6 × 10−5 mol L−1. The detection limit of the proposed method in the presence of 2.0 × 10−5 M of AA was found to be 4.3 × 10−8 mol L−1 for DA determination. The proposed method was successfully applied for the determination of DA in injections.  相似文献   

11.
Quantitation of trace levels of domoic acid (DA) in seawater samples usually requires labour-intensive protocols involving chemical derivatization with 9-fluorenylmethylchloroformate and liquid chromatography with fluorescence detection (FMOC–LC–FLD). Procedures based on LC–MS have been published, but time-consuming and costly solid-phase extraction pre-concentration steps are required to achieve suitable detection limits. This paper describes an alternative, simple and inexpensive LC method with ultraviolet detection (LC–UVD) for the routine analysis of trace levels of DA in seawater without the use of sample pre-concentration or derivatization steps. Qualitative confirmation of DA identity in dubious samples can be achieved by mass spectrometry (LC–MS) using the same chromatographic conditions. Addition of an ion-pairing/acidifying agent (0.15% trifluoroacetic acid) to sample extracts and the use of a gradient elution permitted the direct analysis of large sample volumes (100 μl), resulting in both high selectivity and sensitivity (limit of detection = 42 pg ml−1 by LC–UVD and 15 pg ml−1 by LC–MS). Same-day precision varied between 0.4 and 5%, depending on the detection method and DA concentration. Mean recoveries of spiked DA in seawater by LC–UVD were 98.8% at 0.1–10 ng ml−1 and 99.8% at 50–1000 ng ml−1. LC–UVD exhibited strong correlation with FMOC–LC–FLD during inter-laboratory analysis of Pseudo-nitzschia multiseries cultures containing 60–2000 ng DA ml−1 (r2 > 0.99), but more variable results were obtained by LC–MS (r2 = 0.85). This new technique was used to confirm the presence of trace DA levels in low-toxicity Pseudo-nitzschia spp. isolates (0.2–1.6 ng ml−1) and in whole-water field samples (0.3–5.8 ng ml−1), even in the absence of detectable Pseudo-nitzschia spp. cells in the water column.  相似文献   

12.
A graphene, chitosan and Fe3O4 nanoparticles (nano-Fe3O4) modified glassy carbon electrode (graphene-chitosan/nano-Fe3O4/GCE) was fabricated. The modified electrode was characterized by scanning electron microscope and electrochemical impedance spectroscopy. The electrochemical oxidation behavior of guanosine was investigated in pH 7.0 phosphate buffer solution by cyclic voltammetry and differential pulse voltammetry. The experimental results indicated that the modified electrode exhibited an electrocatalytic and adsorptive activities towards the oxidation of guanosine. The transfer electron number (n), transfer proton number (m) and electrochemically effective surface area (A) were calculated. Under the optimized conditions, the oxidation peak current was proportional to guanosine concentration in the range of 2.0 × 10−6 to 3.5 × 10−4 mol L−1 with the correlation coefficient of 0.9939 and the detection limit of 7.5 × 10−7 mol L−1 (S/N = 3). Moreover, the modified electrode showed good ability to discriminate the electrochemical oxidation response of guanosine, guanine and adenosine. The proposed method was further applied to determine guanosine in spiked urine samples and traditional Chinese medicines with satisfactory results.  相似文献   

13.
Potassium formate was extracted from airport storm water runoff by headspace solid-phase microextraction (HS-SPME) and analyzed by GC–MS. Formate was transformed to formic acid by adding phosphoric acid. Subsequently, formic acid was derivatized to methyl formate by adding methanol. Using sodium [2H]formate (formate-d) as an internal standard, the relative standard deviation of the peak area ratio of formate (m/z 60) and formate-d (m/z 61) was 0.6% at a concentration of 208.5 mg L−1. Calibration was linear in the range of 0.5–208.5 mg L−1. The detection limit calculated considering the blank value was 0.176 mg L−1. The mean concentration of potassium formate in airport storm water runoff collected after surface de-icing operations was 86.9 mg L−1 (n = 11) with concentrations ranging from 15.1 mg L−1 to 228.6 mg L−1.  相似文献   

14.
The contents of the exoskeleton of Parapenaeus longirostris from Moroccan local sources were analyzed and the percentages of inorganic salt, protein, lipid, and chitin were determined. Chitin in the α form was extracted from Parapenaeus longirostris shells by 0.25 M HCl and 1 M NaOH treatment for demineralization and deproteinization, respectively. The obtained chitin was converted into the more useful soluble chitosan. The chemical structure and physico-chemical properties of chitin and chitosan were characterized using Fourier transform-infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, X-ray diffractometry (XRD), and scanning electron microscopy (SEM). The molecular weight (MW) of chitosan was determined by viscometric methods. The degree of acetylation (DA) of chitin and chitosan was determined by the 1H NMR technique. To the best of our knowledge this is the first report on the extraction and characterization of chitin and chitosan from Parapenaeus longirostris.  相似文献   

15.
A biosensor based on the ionic liquid, 1-n-butyl-3-methylimidazolium hexafluorophosphate containing dispersed iridium nanoparticles (Ir-BMI.PF6) and polyphenol oxidase was constructed. This enzyme was obtained from the sugar apple (Annona squamosa), immobilized in chitosan ionically crosslinked with oxalate. The biosensor was used for determination of chlorogenic acid by square wave voltammetry. The polyphenol oxidase catalyzes the oxidation of chlorogenic acid to the corresponding o-quinone, which is electrochemically reduced back to this substance at +0.25 V vs. Ag/AgCl. Under optimized operational conditions the chlorogenic acid concentration was linear in the range of 3.48 × 10−6 to 4.95 × 10−5 mol L−1 with a detection limit of 9.15 × 10−7 mol L−1. The biosensor was applied in the determination of chlorogenic acid in organic and decaffeinated coffee and the results compared with those obtained using the capillary electrophoresis method. The recovery study for chlorogenic acid in these samples gave values of 93.2-105.7%.  相似文献   

16.
High-performance liquid chromatographic method (HPLC) with evaporative light scattering detection (ELSD) coupled with microwave-assisted extraction (MAE) as an efficient sample preparation technique has been developed for fingerprint analysis of Dioscorea nipponica. The samples were separated with an Agilent C8 column using water (A) and acetonitrile (B) under gradient conditions (0-10 min, linear gradient 20-40% B; 10-12 min, linear gradient 40-42% B; 12-25 min, isocratic 42% B) as the mobile phase at a flow rate of 1 mL min−1 within 22 min. The ELSD conditions were optimized at nebulizer-gas flow rate 2.7 L min−1 and drift tube temperature 90 °C. Precision experiments showed relative standard deviation (R.S.D.) of peak area and retention time were better than 2.5%; inter-day and intra-day variabilities showed that R.S.D. was ranged from 0.78% to 4.74%. Limit of detection was less than 50 μg mL−1 and limit of quantification was less than 80 μg mL−1. Accuracy validation showed that average recovery was between 97.39% and 104.07%. The method was validated to achieve the satisfactory precision and recovery. Relative retention time and relative peak area were used to identify the common peaks for fingerprint analysis. There are nine common peaks in the fingerprint. The quality of seven batches of D. nipponica samples was evaluated to be qualified or unqualified by the parameters “difference” and “total difference” of common peaks. Furthermore, the contents of important medicinal compounds (dioscin, prodioscin and gracillin) in different batches of D. nipponica samples were determined simultaneously using the developed HPLC-ELSD method. The results indicated variation of the herb quality which might be related to different producing area, growing condition, climate, harvest time, drug processing and so on. The developed analytical procedure was proved to be a reliable and rapid method for the quality control of D. nipponica.  相似文献   

17.
A flow injection system incorporated with a polycation-sensitive polymeric membrane electrode in the flow cell is proposed for potentiometric determination of heparin. An external current in nano-ampere scale is continuously applied across the polymeric membrane for controlled release of protamine from the inner filling solution to the sample solution, which makes the electrode membrane regenerate quickly after each measurement. The protamine released at membrane–sample interface is consumed by heparin injected into the flow cell via their strong electrostatic interaction, thus decreasing the measured potential, by which heparin can be detected. Under optimized conditions, a linear relationship between the potential peak height and the concentration of heparin in the sample solution can be obtained in the range of 0.1–2.0 U mL−1, and the detection limit is 0.06 U mL−1. The proposed potentiometric sensing system has been successfully applied to the determination of heparin in undiluted sheep whole blood.  相似文献   

18.
Pulgarín JA  Molina AA  López PF 《Talanta》2006,68(3):586-593
Carbaryl, a modern pesticide widely used for both agricultural and non-agricultural purposes, was determined from the chemiluminescence produced in its reaction with Ce(IV) in a nitric acid medium containing rhodamine 6G as sensitizer, using flow-injection techniques. A straightforward automatic method based on measurements peak height and peak area, which are directly proportional to the carbaryl concentration, was thus developed. Calibration graphs are linear over the concentration range from 50 to 2000 ng mL−1. The limit of detection, as determined according to Clayton, is 45.6 and 28.7 ng mL−1 for peak height and peak area measurements, respectively. The relative standard deviation for 10 samples was less than 1.4% with both types of measurements. Two commercial formulations containing carbaryl were analysed using both types of measurements, which provided acceptable recovery values. Solid-phase extraction was used to concentrate and separate the analyte from the matrix. The method was successfully applied to the analysis of spiked water samples as well as in soil and grain samples. The proposed method exhibited a high selectivity no other pesticide containing the naphthalene group such as antu, napropamide or naftalam, etc., was found to interfere with the determination of carbaryl.  相似文献   

19.
In this study a method for the determination of cadmium in fuel alcohol using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry was developed. The sorbent material used was a vermicompost commonly used as a garden fertilizer. The chemical and flow variables of the on-line preconcentration system were optimized by means of a full factorial design. The selected factors were: sorbent mass, sample pH, buffer concentration and sample flow rate. The optimum extraction conditions were obtained using sample pH in the range of 7.3-8.3 buffered with tris(hydroxymethyl)aminomethane at 50 mmol L−1, a sample flow rate of 4.5 mL min−1 and 160 mg of sorbent mass. With the optimized conditions, the preconcentration factor, limit of detection and sample throughput were estimated as 32 (for preconcentration of 10 mL sample), 1.7 μg L−1 and 20 samples per hour, respectively. The analytical curve was linear from 5 up to at least 50 μg L−1, with a correlation coefficient of 0.998 and a relative standard deviation of 2.4% (35 μg L−1, n = 7). The developed method was successfully applied to spiked fuel alcohol, and accuracy was assessed through recovery tests, with recovery ranging from 94% to 100%.  相似文献   

20.
This study presents a new procedure for the determination of trace levels of copper(II) in an aqueous matrix, through flow injection (FI) on-line preconcentration with a minicolumn packed with silica gel modified with 3(1-imidazolyl)propyl groups. After the preconcentration stage, the analyte was eluted with a HNO3 solution and determined by flame atomic absorption spectrometry (FAAS). The measurements of the analytical signals were carried out as peak area and peak height with the objective of evaluating the most appropriate absorption measurement for the proposed method. Four procedures to calculate the experimental enrichment factor (EF) were also studied. For a preconcentration time of 90 s the enrichment factors found in this study varied between 19.5-25.8 and 36.2-42.2 for peak area and peak height, respectively. The precision of the proposed method was calculated for a solution containing 20 μg l−1 of Cu(II), when 11.2 ml of solution was preconcentrated (n=7), and their respective relative standard deviation (R.S.D.) values were 1.2 and 1.4% for peak area and peak height, respectively. The detection limits obtained were 0.4 and 0.2 μg l−1 of Cu(II) for peak area and peak height, respectively, with a preconcentration time of 90 s. The on-line preconcentration system accuracy was evaluated through a recovery test on the aqueous samples and analysis of a certified material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号