首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The enthalpies of solution of N-acetyl-N′-methylglycinamide, N-acetyl-N′-methyl-l-α-alaninamide, N-acetyl-N′-methyl-l-α-leucinamide and N-acetyl-N′-methyl-l-α-serinamide have been measured in water and in aqueous urea solutions with molalities from 0.25 to 3.0 mol kg−1 at 298.15 K. From these data the standard dissolution enthalpies of amides in aqueous urea solutions have been determined. The results have been treated according to McMillan-Mayer's theory in order to obtain the enthalpic coefficients of the interactions between amino acid derivatives and urea molecules. The obtained parameters were compared with the hydrophobic scale for the amino acid side chains.  相似文献   

2.
Protonation constants of carbonate were determined in tetramethylammonium chloride (Me4NClaq 0.1 ≤ I/mol kg−1 ≤ 4) and tetraethylammonium iodide (Et4NIaq 0.1 ≤ I/mol kg−1 ≤ 1) by potentiometric ([H+]-glass electrode) measurements. Dependence of protonation constants on ionic strength was taken into account by modified specific ion interaction theory (SIT) and by Pitzer models. Literature data on the protonation of carbonate in NaClaq (0.1 ≤ I/mol kg−1 ≤ 6) were also critically analysed. Both protonation constants of carbonate follow the trend Et4NI > Me4NCl > NaCl. An ion pair formation model designed to take into account the different protonation behaviours of carbonate in different supporting electrolytes was also evaluated.  相似文献   

3.
The enthalpies of solution were determined for 1,1,3,3-tetramethylurea in ethanol, 1-propanol, 2-propanol, 1-butanol, and t-butanol (2-methyl-2-propanol). Measurements were made at 298.15 K and molalities m ≅ (0.007 to 0.036) mol · kg−1 with a precise isoperibol ampoule-type calorimeter. Standard enthalpies of solution and transfer from one alkanol to the other (including methanol) were calculated. The obvious relationship between the enthalpic and volumetric effects of solution of tetramethylurea in the n-alkanols (C1-C4) was discovered. The enthalpic effects of transfer caused by branching of the alkanol molecules, 1-propanol → 2-propanol, and 1-butanol → t-butanol, are opposite in sign and dominated by the configurational changes in the solvation environment of tetramethylurea.  相似文献   

4.
Dos Santos LB  Abate G  Masini JC 《Talanta》2005,68(2):165-170
Square wave voltammetry automated by sequential injection analysis was applied to determine the Freundlich adsorption coefficients for the adsorption of atrazine onto a clay rich soil. The detection limit in soil extracts was between 0.18 and 0.48 μmol L−1, depending on the medium used to prepare the extracts (0.010 mol L−1 KCl, CaCl2 or HNO3 and 0.0050 mol L−1 H2SO4), all of them conditioned in 40 mmol L−1 Britton-Robinson buffer at pH 2.0 in presence of 0.25 mol L−1 NaNO3. Also in soil extracts the linear dynamic range was between 1.16 and 18.5 μmol L−1 (0.25-4.0 μg mL−1), with a sampling frequency of 190 h−1. The Kf Freundlich adsorption coefficient was 3.8 ± 0.2 μmol1−1/n Ln kg−1 in medium of 0.010 mol L−1 KCl or CaCl2, but increased to 7.7 ± 0.1 and 9.0 ± 0.3 μmol1−1/n Ln kg−1 in 0.010 mol L−1 HNO3 and 0.0050 mol L−1 H2SO4, respectively. The increase of Kf was related to the decrease of pH from 6.4-6.7 in KCl and CaCl2 to 3.7-4.0 in presence of HNO3 or H2SO4, which favors protonation of atrazine, facilitating electrostatic attractions with negative charges of the clay components of the soil. The 1/n parameters were between 0.76 and 0.86, indicating that the isotherms are not linear, suggesting the occurrence of chemisorption at specific adsorption sites. No statistically significant differences were observed in comparison to the adsorption coefficients obtained by HPLC. The advantage of the proposed SI-SWV method is the great saving of reagent because it does not use organic solvent as in the case of HPLC (50% (v/v) acetonitrile in the mobile phase). Additionally the start up of SI-SWV is immediate (no column conditioning necessary) and the analysis time is only 19 s.  相似文献   

5.
Enthalpies of solution of glycine, l-alanine and l-serine in water and aqueous solutions of NaNO3 and NaClO4 have been determined at T = 298.15 K with a calorimeter. Enthalpies of transfer (ΔtrH) from water to aqueous solutions of salts were derived and interpreted in terms of electrostatic interaction and structural interaction. ΔtrH decreases with increasing salt concentration in the composition range studied. The transfer enthalpies of amino acids from water to NaNO3 solution and low concentration NaClO4 solution vary in the sequence l-serine < glycine < l-alanine while glycine < l-serine < l-alanine in NaClO4 solution above 2 mol kg−1. The difference may be due to ion association at high concentration, weakening the interaction with l-serine more than with glycine.  相似文献   

6.
Two pure strontium borates SrB2O4·4H2O and SrB2O4 have been synthesized and characterized by means of chemical analysis and XRD, FT-IR, DTA-TG techniques. The molar enthalpies of solution of SrB2O4·4H2O and SrB2O4 in 1 mol dm−3 HCl(aq) were measured to be −(9.92 ± 0.20) kJ mol−1 and −(81.27 ± 0.30) kJ mol−1, respectively. The molar enthalpy of solution of Sr(OH)2·8H2O in (HCl + H3BO3)(aq) were determined to be −(51.69 ± 0.15) kJ mol−1. With the use of the enthalpy of solution of H3BO3 in 1 mol dm−3 HCl(aq), and the standard molar enthalpies of formation for Sr(OH)2·8H2O(s), H3BO3(s), and H2O(l), the standard molar enthalpies of formation of −(3253.1 ± 1.7) kJ mol−1 for SrB2O4·4H2O, and of −(2038.4 ± 1.7) kJ mol−1 for SrB2O4 were obtained.  相似文献   

7.
Navid Nasirizadeh 《Talanta》2009,80(2):656-661
A highly efficient noradrenalin (NA) biosensor was fabricated on the basis of hematoxylin electrodeposited on a glassy carbon electrode, GCE. The cyclic voltammetric responses of the hematoxylin biosensor at various scan rates, which were obtained in a 0.25 mmol L−1 NA solution, showed the characteristic shape typical of an ECcat process. The kinetic parameters such as electron transfer coefficient, α, the catalytic electron transfer rate constant, k′, and the standard catalytic electron transfer rate constant, k0, for oxidation of NA at the hematoxylin biosensor surface were estimated using cyclic and RDE voltammetry. The peaks of differential pulse voltammetric (DPV) for NA and acetaminophen (AC) oxidation at the hematoxylin biosensor surface were clearly separated from each other when they co-exited in the physiological pH (pH 7.0). It was, therefore, possible to simultaneously determine NA and AC in the samples at a hematoxylin biosensor. Linear calibration curves were obtained for 5.0 × 10−1 to 65.40 μmol L−1 and 65.40-274.20 μmol L−1 of NA, and for 12.00-59.10 μmol L−1 and 59.10-261.70 μmol L−1 of AC. The sensitivities of the biosensor to NA in the absence and presence of AC were found virtually the same, which indicates the fact that the electrocatalytic oxidation processes of NA are independent of AC and, therefore, simultaneous or independent measurements of the two analytes (NA and AC) are possible without any interference. The results of 16 successive measurements show an average voltammetric peak current of 1.13 ± 0.03 μA for an electrolyte solution containing 5.00 μmol L−1 NA. The hematoxylin biosensor has been satisfactorily used for the determination of NA and AC in pharmaceutical formulations. The results obtained, using the biosensor, are in very good agreement with those declared in the label of pharmaceutical inhalation products.  相似文献   

8.
A new synthetic method of szaibelyite (2MgO·B2O3·H2O) has been reported. The enthalpy of solution of 2MgO·B2O3·H2O in 2.9842 mol dm−3 HCl (aq) was determined. From a combination of this result with measured enthalpies of solution of H3BO3 in 2.9842 mol dm−3 HCl (aq) and of MgO in (HCl+H3BO3) solution, together with the standard molar enthalpies of formation of MgO (s), H3BO3 (s), and H2O (l), the standard molar enthalpy of formation of −(2884.36±1.82) kJ mol−1 of 2MgO·B2O3·H2O was obtained.  相似文献   

9.
The use of aerosol produced in a nebulization chamber is proposed as an alternative to gas sample capture in flow systems. This paper describes the coupling of a sampling interface with a flow system, for in situ gas monitoring. Aspects related with the behavior of aerosol formation and gas solubilization in liquid drops are discussed. The method is applied to the determination of residual lime in acidic soils. Aliquots of 5.0 ml of 1.0 mol l−1 HCl were mixed with soil samples (1 g). The CO2 released from these samples was captured by a nebulized aerosol and determined conductivity. The analytical curve from 1.0×10−2 to 5.0×10−2 mol kg−1 CaCO3 was ploted applying the matrix matching approach. This proposition, allowed an increase in the sensibility with detection limit of 6.0×10−3 mol kg−1. The precision was good (R.S.D. <3%) for an analytical frequency of 22 determinations per hour. A fair agreement, at 95% confidence level, was found between the results from the proposed method and certified values of the investigated samples.  相似文献   

10.
The enthalpies of dilution have been measured for aqueous Li2B4O7 solutions from 0.0212 to 2.1530 mol kg−1 at 298.15 K. The relative apparent molar enthalpies, L?, and relative partial molar enthalpies of the solvent and solute, and were calculated. The thermodynamic properties of the complex aqueous solutions were represented with a modified Pitzer ion-interaction model.  相似文献   

11.
The enthalpies of solution of NaRb[B4O5(OH)4]·4H2O in approximately 1 mol dm−3 aqueous hydrochloric acid and of RbCl in aqueous (hydrochloric acid + boric acid + sodium chloride) were determined. From these results and the enthalpy of solution of H3BO3 in approximately 1 mol dm−3 HCl(aq) and of sodium chloride in aqueous (hydrochloric acid + boric acid), the standard molar enthalpy of formation of −(5128.02 ± 1.94) kJ mol−1 for NaRb[B4O5(OH)4]·4H2O was obtained from the standard molar enthalpies of formation of NaCl(s), RbCl(s), H3BO3(s) and H2O(l). The standard molar entropy of formation of NaRb[B4O5(OH)4]·4H2O was calculated from the Gibbs free energy of formation of NaRb[B4O5(OH)4]·4H2O computed from a group contribution method.  相似文献   

12.
Enthalpies of solution of TiCl4(l) in aqueous perchloric acid have been measured in an isothermal calorimeter at T = 298.15 K at ionic strengths of (1.964, 3.002, and 4.062) mol · kg−1. These results were extrapolated to zero ionic strength using an extended Debye-Hückel equation, to yield the standard enthalpy of solution ; from which the standard partial molar enthalpy of formation of the titanyl ion was derived: .  相似文献   

13.
Mrak T  Slejkovec Z  Jeran Z 《Talanta》2006,69(1):251-258
Different extraction procedures were applied to improve the extraction efficiency of arsenic compounds from lichens. Two lichen species were chosen from an arsenic-contaminated environment: epiphytic Hypogymnia physodes (L.) Nyl. and terricolous Cladonia rei Schaer. Samples were extracted with water at temperatures of 20, 60 and 90 °C, using mixtures of methanol/water (9:1, 1:1 and 1:9), Tris buffer and acetone and the extracts speciated. Water and Tris buffer showed the best extraction efficiency of all extractants used; however, the extraction efficiency was still less than 23%. Since a major fraction of arsenic appeared to be associated with trapped soil particles, a sequential extraction procedure originally designed for soils (extraction steps: (1) 0.05 mol l−1 (NH4)2SO4; (2) 0.05 mol l−1 (NH)4H2PO4; (3) 0.2 mol l−1 NH4-oxalate buffer, pH 3.25; (4) mixture of 0.2 mol l−1 NH4-oxalate buffer and 0.1 mol l−1 ascorbic acid, pH 3.25; (5) 0.5 mol l−1 KOH) was applied and found to remove 45% of the total arsenic from H. physodes and 83% from C. rei. The lipid-soluble fraction of arsenic was estimated by k0-INAA analysis of diethylether extracts and was found to be negligible. An HPLC-UV-HGAFS system was used to determine the arsenic compounds extracted. In both lichen species, arsenous acid, arsenic acid, monomethylarsonic acid, dimethylarsinic acid, arsenobetaine, trimethylarsine oxide and glycerol-ribose were detected. In addition, phosphate-ribose was found in H. physodes.  相似文献   

14.
A multicommuted flow system is proposed for spectrophotometric determination of hydrosoluble vitamins (ascorbic acid, thiamine, riboflavine and pyridoxine) in pharmaceutical preparations. The flow manifold was designed with computer-controlled three-way solenoid valves for independent handling of sample and reagent solutions and a multi-channel spectrophotometer was employed for signal measurements. Periodic re-calibration as well as the standard addition method was implemented by using a single reference solution. Linear responses (r=0.999) were obtained for 0.500-10.0 mg l−1 ascorbic acid, 2.00-50.0 mg l−1 thiamine, 5.00-50.0 mg l−1 riboflavine and 0.500-8.00 mg l−1 pyridoxine. Detection limits were estimated as 0.08 mg l−1 (0.5 μmol l−1) ascorbic acid, 0.8 mg l−1 (2 μmol l−1) thiamine, 0.2 mg l−1 (0.5 μmol l−1) riboflavine and 0.1 mg l−1 (0.9 μmol l−1) pyridoxine at 99.7% confidence level. A mean sampling rate of 60 determinations per hour was achieved and coefficients of variation of 1% (n=20) were estimated for all species. The mean reagent consumption was 25-fold lower in relation to flow-based procedures with continuous reagent addition. Average recoveries between 95.6 and 100% were obtained for commercial pharmaceutical preparations. Results agreed with those obtained by reference methods at 95% confidence level. The flow system is suitable for application in quality control processes and in dissolution studies of vitamin tablets.  相似文献   

15.
In this paper, ascorbic acid as a new carbon dioxide (CO2) absorbent was investigated. The equilibrium solubility of CO2 into 0.5, 1 and 1.5 mol dm−3 (M) aqueous ascorbic acid solutions were measured experimentally with a stirred batch reactor at total atmospheric pressure over the CO2 partial pressure ranging from 0 to 45 kPa and temperatures between 298 and 313 K. The results of the gas solubility are presented as loading capacity (mol CO2/mol ascorbic acid) as function of partial pressure of CO2 for all experimental runs. Experimental results showed that solubility of CO2 increases with increase in molar concentration of ascorbic acid solution at a given temperature and decreases with increase in temperature at a given concentration. The densities and viscosities of the ascorbic acid solutions were measured at the same conditions of the solubility measurement. Some corrosion rate tests were also performed on carbon steel at temperature of 308 K. It was observed that viscosity and corrosion rate increase when the molar concentration of ascorbic acid solution increases.  相似文献   

16.
Tubino M  de Souza RL 《Talanta》2006,68(3):776-780
A quantitative analytical method for the determination of diclofenac in pharmaceutical preparations by diffuse reflectance in the visible region of the spectrum is presented. The color reaction is done directly in the measuring cell immediately after mixing, using small volumes of the analyte solution, of the reagent and of the buffer solutions. All reflectance measurements were carried out in a home made reflectometer equipped with a red LED as light source and a LDR as detector. The calibration curves were constructed from 1.0 to 18 mg mL−1 (about 3.0 × 10−3 to 5.5 × 10−2 mol L−1) of sodium diclofenac or of potassium diclofenac in the analytical solution, with typical correlation coefficients equal to 0.999. The detection limit was estimated to be about 0.7 mg mL−1 (2 × 10−3 mol L−1). The method was applied to determine diclofenac in solid and liquid pharmaceutical preparations. The R.S.D. varied from 2% to 4% depending of the sample. The results were compared with those obtained with the HPLC procedure recommended by the United States Pharmacopoeia using the statistical Student's t-test procedure.  相似文献   

17.
An on-line solution-reaction isoperibol calorimeter has been constructed. The performance of the apparatus was evaluated by measuring the molar enthalpy of solution of KCl in water at 298.15 K. The uncertainty and the inaccurary of the experimental results were within ±0.3% compared with the recommended reference data. Using the calorimeter, the molar enthalpies of reaction for the following two reactions: LaCl3·7H2O(s)+2Hhq(s)+NaAc(s)=La(hq)2Ac(s)+NaCl(s)+2HCl(g)+7H2O(l) and PrCl3·6H2O(s)+2Hhq(s)+NaAc(s)=Pr(hq)2Ac(s)+NaCl(s)+2HCl(g)+6H2O(l), were determined at T=298.15 K, as −(78.3±0.6) and −(97.3±0.5) kJ mol−l, respectively. From the above molar enthalpies of reaction and other auxiliary thermodynamic quantities, the standard molar enthalpies of formation of La(hq)2Ac and Pr(hq)2Ac, at T=298.15 K, have been derived to be −(1535.5±0.7) and −(1536.7±0.6) kJ mol−l, respectively.  相似文献   

18.
Huisgen cycloaddition reactions of the insoluble yellow solid, phthalazinium dicyanomethanide occurred readily for vigorously stirred aqueous suspensions when the solid dipolarophile had solubility >ca. 10−3 mol L−1. For a solubility of ca. 10−4 mol L−1, liquefaction of the dipolarophile was necessary in order to achieve reactions.  相似文献   

19.
Yu Y  Lin LR  Yang KB  Zhong X  Huang RB  Zheng LS 《Talanta》2006,69(1):103-106
A novel and simple fluorophore, p-dimethylaminobenzaldehyde thiosemicarbazone (DMABTS), was prepared in order to find available fluorescent chemosensor for mercuric ion in aquesous solution. DMABTS emitted fluorescence at 448 nm in aqueous solution and its fluorescence intensity was completely quenched upon interaction with Hg2+ ions, which should be attributed to the 1:1 complex formation between DMABTS and Hg2+. The binding constant of the complex was determined as 7.48 × 106 mol l−1. The linear range of quantitative detection of 0 to 5.77 × 10−6 mol l−1 and the detection limit of 7.7 × 10−7 mol l−1 for Hg2+ in the 6.3 × 10−6 mol l−1 DMABTS aqueous solution were obtained from a calibration curve. The coexistence of several transition metal ions and anions did interfere the fluorometric titration of Hg2+ ion by less than 4% in the emission change.  相似文献   

20.
A novel biomimetic sensor for rutin determination based on a dinuclear complex [MnIIIMnII(Ldtb)(μ-OAc)2]BPh4 containing an unsymmetrical dinucleating ligand, 2-[N,N-bis(2-pyridylmethyl)-aminomethyl]-6-[N-(3,5-di-tert-butyl-2-oxidoben-zyl)-N-(2-pyridylamino)aminomethyl]-4-methylphenol (H2Ldtb), as a manganese peroxidase mimetic was developed. Several parameters were investigated to evaluate the performance of the biomimetic sensor obtained after the incorporation of the dinuclear complex in a carbon paste. The best performance was obtained in 75:15:10% (w/w/w) of the graphite powder:Nujol:MnIIIMnII complex, 0.1 mol L−1 phosphate buffer solution (pH 6.0) and 4.0 × 10−5 mol L−1 hydrogen peroxide. The response of the sensor towards rutin concentration was linear using square wave voltammetry in the range of 9.99 × 10−7 to 6.54 × 10−5 mol L−1 (r = 0.9998) with a detection limit of 1.75 × 10−7 mol L−1. The recovery study performed with pharmaceuticals ranged from 96.6% to 103.2% and the relative standard deviation was 1.85% for a solution containing 1.0 × 10−3 mol L−1 rutin (n = 6). The lifetime of this biomimetic sensor was 200 days (at least 750 determinations). The results obtained for rutin in pharmaceuticals using the biomimetic sensor and those obtained with the official method are in agreement at the 95% confidence level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号