首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary The aspartame is an artificial sweetener was discovered accidentally in the United States by J. M. Schlatter in 1965. In this work the kinetic of the thermal decomposition of sweetener, containing aspartame as sweetening agent, by means isothermal TG method was studied. The comparison of thermogravimetric data to the reference profiles of standard aspartame and lactose suggests an interaction between the two components in the sweetener, due to the decrease in the thermal stability of sweetener and of the overlapping processes. In the isothermal kinetic study the sweetener exhibited lower activation energy values, indicating a lower stability corroborating the thermoanalytical data. In case of the sweetener, the lower activation energy can be related to the interactions which took place between its components.  相似文献   

2.
The thermooxidative degradation of poly(vinyl chloride)/chlorinated polyethylene blends of different compositions was investigated by means of isothermal thermogravimetry in flowing atmosphere of synthetic air at temperatures 240–270 °C. The main degradation processes are dehydrochlorination of PVC and CPE. For calculation of the apparent activation energy and apparent pre-exponential factor two kinetic methods were used: isoconversional method and Prout–Tompkins method. True compensation dependency between Arrhenius parameters, obtained using Prout–Tompkins model, was found. Calculated kinetic parameters of isothermal thermooxidative degradation are close to those from non-isothermal degradation and confirm the assumption of the main degradation process in PVC/CPE blends.  相似文献   

3.
The process of artificial rancidification of extra-virgin olive oil due to heating in an oxidizing atmosphere was studied by testing an actual kinetic model of the process and monitoring the thermal oxidative degradation of the polyphenols contained in it. To this end, a series of oxidative degradation experiments were carried out on extra-virgin olive oil samples under isothermal conditions at 98, 120, 140, 160, and 180 °C using a thermostatic silicon oil bath. The experimental procedure used in this study carefully followed the recommendations regarding the study of olive oil rancidification set out in the AOM procedure. The change in polyphenol concentration with time was monitored at selected temperatures using a tyrosinase biosensor operating in an organic phase (n-hexane). The activation energy for the polyphenol degradation process determined using the MacCallum method was found to be practically constant throughout most of the process.

Furthermore, the application of the so-called “model-fitting” method to this process enabled the specific constant rates to be determined at the above-mentioned selected temperatures. In addition, a confirmation of the activation energy value was obtained by the “model-fitting” method and the algorithm of the kinetic model equation best-fitting the experimental curve representing the whole process was checked.

Finally, further very interesting observations were made, for instance, the half-life concentration values of polyphenols at selected temperatures between 98 and 180 °C.  相似文献   


4.
This work deals with the isothermal pyrolysis of Pine and Beech wood samples and kinetic studies, using the thermo-analytical technique, at five different operating temperatures. Pyrolysis processes were investigated by using the distributed apparent activation energy model, which involves the complex mixture of different continuous distribution functions. It was found that decomposition processes of wood pseudo-components take place in different conversion areas during entire pyrolyses, whereby these areas, as well as the changes in apparent activation energy (E a) values, are not the same for softwood and hardwood samples. Bulk density (Bden) and energy density (ED) considerations have shown that both biomass samples suffer from low Bden and ED values. It was concluded that pyrolysis can be used as a means of decreasing transportation costs of wood biomass materials, thus increasing energy density. The “pseudo” kinetic compensation effect was identified, which arises from kinetic model variation and wood species variation. In the current extensive study, it was concluded that primary pyrolysis refers to decomposition reactions of any of three major constituents of the considered wood samples. Also, it was established that primary reactions may proceed in parallel with simultaneous decomposition of lignin, hemicelluloses and cellulose in the different regions of wood samples, depending on the operating temperature. It was established that endothermic effects dominate, which are characterized with devolatilization and formation of volatile products. It has been suggested that the endothermic behavior that arises from pyrolyses of considered samples may indicate the endothermic depolymerization sequence of cellulose structures.  相似文献   

5.
Wood has been treated with guanidine phosphate, guanidine nitrate, guanidine carbonate and guanidine chloride to impart flame retardancy. The samples were subjected to differential thermal analysis (DTA) and thermogravimetry (TG) from ambient temperature to 800°C in air to study their thermal behaviors. From the resulting data, kinetic parameters for different stages of thermal degradation were obtained following the method of Broido. For the decomposition of wood and flame retardant wood, the activation energy was found to decrease from 116 to 54 kJ mol–1; the char yield was found to increase from 5.6 to 34.9%, LOI from 18 to 41.5, which indicated that the flame retardancy of treated wood was improved. Effects of the different compounds on the degradation and flammability of wood have also been proposed.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

6.
用热重法(TG)研究了聚芳醚醚酮(PEEK)和磺化改性的聚芳醚醚酮(S-PEEK)的热分解动力学,计算了热分解动力学参数,结果表明PEEK及S-PEEK的热分解符合无规引发裂解模型。进一步考察了磺化对PEEK热分解的影响,结合温度程序裂解色谱-质谱结果,探讨了S-PEEK的TG曲线上呈现二个失重台阶的意义。  相似文献   

7.
聚芳醚醚酮和磺化聚芳醚醚酮的热分解动力学   总被引:5,自引:1,他引:5  
 用热重法(TG)研究了聚芳醚醚酮(PEEK)和磺化改性的聚芳醚醚酮(S-PEEK)的热分解动力学,计算了热分解动力学参数,结果表明PEEK及S-PEEK的热分解符合无规引发裂解模型。进一步考察了磺化对PEEK热分解的影响,结合温度程序裂解色谱-质谱结果,探讨了S-PEEK的TG曲线上呈现二个失重台阶的意义。  相似文献   

8.
The thermal decomposition under non-oxidative conditions of a copolymer of vinylidene cyanide (VCN) and 2,2,2-trifluoroethyl methacrylate (MATRIF) was investigated by thermogravimetry (TG) and Pyrolysis-GC-MS. The type and composition of the pyrolytic products and the shape of the TG curve indicate that both the main thermal degradation process, with onset at 368 °C, and a minor weight loss at around 222 °C are mainly associated with random main-chain scission. The kinetic parameters were determined by means of dynamic and, in the case of the main degradation stage, also isothermal methods. The results obtained from the dynamic methods (Friedman, Flynn-Wall-Ozawa, and Kissinger, respectively) are in good agreement with those obtained from isothermal TG data. The activation energy was in the 177-213 kJ/mol range for the first stage, and 224-295 kJ/mol for the second stage, the highest respective values being determined from the kinetic analysis according to the Kissinger method.  相似文献   

9.
聚芳醚醚酮的热老化寿命研究   总被引:1,自引:0,他引:1  
本工作用热重法(TG)研究了聚芳醚醚酮(PEEK)在空气和氮气中的热分解反应过程;确定了PEEK在这两种气氛中的热分解反应模型均符合无规引发断裂模型;在空气中PEEK的热分解显示两个过程,由此计算其在空气中第一阶段的热分解和氮气中的热分解反应活化能分别为214.7kJ/mol和232.2kJ/mol;由热分解反应动力学参数推算出热老化寿命曲线,并讨论了实验条件对结果的影响,进而以失重5%作为材料寿终指标估算出PEEK在氮气和空气中使用10年的最高温度分别为307℃和274℃。  相似文献   

10.
Thermal degradation of wood treated with flame retardants   总被引:2,自引:0,他引:2  
Wood, one of the most flammable materials, was treated with various compounds containing nitrogen, phosphorus, halogens, and boron. For a study of flame retardance from the standpoint of thermal degradation, the samples were subjected to thermogravimetry (TG), differential thermal analysis (DTA) and differential thermogravimetry (DTG) in nitrogen to determine if there were any characteristic correlations between thermal degradation behaviors and the level of flame retardance. From the resulting data, kinetic parameters for different stages of thermal degradation are obtained using the method of Broido. The energies of activation for the decomposition of samples are found to be from 72 to 109 kJ mol–1. For wood and modified wood, the char yields are found to increase from 10.2 to 30.2%, LOI from 18 to 36.5, which indicates that the flame retardance of wood treated with compounds is improved. The flame retardant mechanism of different compounds has also been proposed.  相似文献   

11.
The process of thermal degradation of poly(vinyl chloride)/poly(methyl methacrylate-butadiene-styrene) (PVC/MBS) blends was investigated by means of isothermal thermogravimetry in nitrogen. The total mass loss was determined after 120 min. The kinetic parameters of the degradation process were determined by applying two kinetic models: the model which assumes autocatalytic degradation (Prout-Tompkins) and the model of two-dimensional diffusion. It was established that the thermal degradation at lower degrees of conversion (α<0.20) was well described by the former model, but the latter model was applicable at higher degrees of conversion. The thermal stability of blends at a certain temperature of isothermal degradation depends on the blend composition and the shell/core ratio in MBS, and on the adhesion in the boundary layer in PVC/MBS blends. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
A set of materials has been prepared by sol–gel process containing different quantities of hydroxyapatite (0, 2.5 and 5% HAp w/w) using as silica precursors glycidyloxypropyltrimethoxysilane (GPTMS) and triethoxyvinylsilane (VTES). In order to optimize the curing process to obtain sintherized systems (inorganic network) or hybrid systems (organic–inorganic) a TG and FTIR studies have been developed and degradation kinetic triplet parameters were obtained (the activation energy, pre-exponential factor, and function of degree of conversion). The kinetic study was analyzed by means of an integral isoconversional non-isothermal procedure (model free), and the kinetic model was determined by the Coats–Redfern method and through the compensation effect (IKR). All the systems followed the n = 6 kinetic model. The addition of HAp increases the thermal stability of the systems. The isothermal degradation was simulated from non-isothermal data, and the curing process could be defined to obtain the two types of materials. Temperature under 250 °C allows the formation of hybrids networks.  相似文献   

13.
The kinetic deuterium isotope effect in the thermal dehydration stages of powdered SrCl2 · 2H2O was examined by means of both isothermal and dynamic gravimetries. These dehydration processes proved to be controlled by a random nucleation and its subsequent growth mechanism. No significant kinetic isotope effect was seen in these dehydration stages. It seems that there exists a kinetic compensation effect between the hydrate and its deuterium analog, if any isotopic differences in activation energy and frequency factor could exist.  相似文献   

14.
Thermal degradation of as-electrospun chitosan membranes and samples subsequently treated with ethanol and cross-linked with glutaraldehyde has been studied by thermogravimetry (TG) coupled with an infrared spectrometer. The influence of the electrospinning process and cross-linking in the electrospun chitosan thermal stability was evaluated. Up to three degradation steps were observed in the TG data, corresponding to water dehydration reaction at temperatures below 100 °C, loss of side groups formed between the amine groups of chitosan and trifluoroacetic acid between 150 and 270 °C and chitosan thermal degradation that starts around 250 °C and goes up to 400 °C. The Kissinger model was employed to evaluate the activation energies of the electrospun membranes during isothermal experiments and revealed that thermal degradation activation energy increases for the samples processed by electrospinning and subsequent neutralization and cross-linking treatments with respect to the neat chitosan powder.  相似文献   

15.
One possible process for recovering valuable chemical and petrochemical products from plastic waste is the stepwise thermal degradation of polymer mixtures. This potentially allows the step by step simultaneous separation of the different product fractions generated by the polymers of the blend. The aim of this paper is to investigate the effect of the mixing scale of the polymers and their interactions in the melt. Several thermogravimetric analyses were performed on small samples of polyethylene (PE) and polystyrene (PS) mixtures. Two types of operating conditions were adopted: the first one is a dynamic analysis with a linear increase of the temperature over time, the latter consists of two sequential isothermal steps. The experimental results confirm that if the mixing scale is poor, the decomposition of each polymer behaves independently of the presence of the other one. Conversely, when the mixing of the two polymers reaches the molecular scale, a co-pyrolysis takes place with partial interactions. A two phase system is assumed: one phase characterized by a larger PS fraction, the other one by a prevailing PE amount. In order to properly predict the kinetic interactions typical of the mixed phases, it was necessary to extend the detailed kinetic model already developed and validated for the single polymers. The resulting two phase model gives a satisfactory explanation of several experimental data from the thermal degradation of PE–PS mixtures.  相似文献   

16.
The pyrolysis of poly-α-acetoxystyrene was investigated by using two methods thermogravimetry, and a reactor working under dynamic conditions coupled with a chromatograph.Thermogravimetry was used firstly with a constant heating rate and secondly under isothermal conditions. Two different degradation steps for the polymer were found, the first between 140 and 200°C and the second above 220°C. The kinetics of the overall pyrolysis were studied for the first thermal degradation step. The degradation order is zero when the weight loss is less than 10%, and unity when the weight loss is between 10 and 32%. The activation energy is about 40 kcal/mole for either order. The results obtained by using dynamic and isothermal thermogravimetry are in good agreement.Volatile products were identified and analysed by using a reactor working under dynamic conditions coupled with a chromatograph. The decomposition is similar to that of poly(vinyl acetate) and different to that of known substituted polystyrenes. Acetic acid was the main component of the volatile products (90–95%), the others being the monomer and acetophenone.  相似文献   

17.
Crosslinking of linear poly[2,2′-(1,4-phenylene)-6,6′-bis(3-phenylquinoxaline)] (PPQ) by isothermal heat exposure in the temperature range between 425 and 490°C was investigated by means of torsional braid analysis. The change in glass transition temperature due to isothermal exposure was used as a kinetic parameter. In order to determine the effect of molecular weight and type of polymer chain ends, three PPQ samples were prepared that differed only in molecular weight and polymer chain endgroups. The apparent activation energy of isothermal crosslinking was independent of molecular weight and chain endings. Its value of 60 kcal/mole is the same as that for the thermal degradation of PPQ (determined by isothermal weight loss measurements). The rates of change of Tg at a particular temperature, however, are a function of both molecular weight (at least for these polymers that do not have a sufficiently high molecular weight) and the type of polymer chain ends. It was observed that isothermally crosslinked PPQ gave a higher break point in the TGA curve and also an increased char yield at 800°C than the linear precursor.  相似文献   

18.
The non-isothermal degradation kinetics of N,N'-di(diethoxythiophosphoryl)-1,4-phenylenediamine in N2 was studied by TG-DTG techniques.The kinetic parameters,including the activation energy and pre-exponential factor of the degradation process for the title compound were calculated by means of the Kissinger and Flynn-Wall-Ozawa(FWO)method and the thermal degradation mechanism of the title compound was also studied with the Satava-Sestak methods.The results indicate that the activation energy and pre-exponential factor are 152.61 kJ/mol and 9.06×101 4s -1with the Kissinger method and 154.08 kJ/mol with the Flynn-Wall-Ozawa method,respectively.It has been shown that the degradation of the title compound follows a kinetic model of one-dimensional diffusion or parabolic law,the kinetic function is G(α)=α2and the reaction order is n=2.  相似文献   

19.
A new regular poly(ester amide) consisting of glycolic acid and 12‐aminododecanoic acid was synthesized by a thermal polycondensation method involving the formation of a metal halide salt. Polymerization could start in liquefied or solid phases, depending on the reaction temperature. The polymerization kinetics were investigated by isothermal and nonisothermal isoconversional methods. The reaction model was selected with both Coats–Redfern and isokinetic relationships. The activation energy was higher when the reaction took place mainly in the solid state. A compensation effect was found between the frequency factor and the activation energy. The thermal properties of the new polymer were studied as well as the isothermal crystallization from the melt state. Melt‐grown spherulites were studied by means of polarizing optical microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1199–1213, 2006  相似文献   

20.
The thermal degradation of poly(furfuryl methacrylate) (PFM) has been studied by means of dynamic thermogravimetric analysis (TGA) in the temperature range 100–600°C under nitrogen and oxygen atmospheres at various heating rates, and the apparent activation energy for the interval 230–340°C corresponding to the first degradation step was determined. Isothermal TGA at 250°C, 275°C and 300°C was carried out and the apparent activation energy values obtained were compared with those determined in dynamic experiments. The residues from isothermal degradation experiments were analysed by infrared spectroscopy and the results seem to indicate that in the thermal degradation of PFM the formation of cyclic structures of 2,4-dimethylglutaric anhydride occurs in the macromolecular chains, together with partial depolymerization of polymer segments, as well as intermolecular crosslinking through oxidation of the C---H bond in position 5 of some furfuryl rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号