首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Calorimetric titration experiments have been performed in pH 2.0 and 7.2 phosphate buffer solutions at 298.15 K to calculate the complex stability constants (KS) and thermodynamic parameters (ΔG°, ΔH°, and TΔS°) for the stoichiometric 1:1 inclusion complexation of water-soluble calix[4]arene tetrasulfonate (CAS) and thiacalix[4]arene tetrasulfonate (TCAS) with some diazacycloalkane guests, i.e. piperazine (1), homopiperazine (2) and 1,5-diazacyclooctane (3). The results indicated that complexes of CAS and TCAS with diazacycloalkane guests were enthalpy-stabilized, and an acidic environment was more favorable to host-guest complexation than a neutral one. CAS forms more stable complexes with guest molecules than TCAS due to the more favorable enthalpic gain.  相似文献   

2.
Complex formation equilibria between Ag(I) and thiourea or N-alkyl-substituted thioureas have been investigated in n-propanol by potentiometry at 10 °C intervals from 5 to 50 °C. Stepwise formation of tris-coordinated AgLn (n = 1-3) complexes has been found for the majority of the ligands. ΔH and ΔS values for the complex formation reactions have been evaluated from the dependence of ln βn on temperature. The alkyl-substituents affect the ligand affinities in different ways in relation with the coordination level n.The reactions are exothermic with few exceptions. Enthalpy favoured complex formation with negative dependence of ΔG on temperature (ΔS > 0) have been found.The enthalpy and entropy changes for the stepwise complex formation equilibria are correlated by two linear compensative relationships with the same isoequilibrium temperature 50-51 °C.  相似文献   

3.
Alkyl and dialkylammonium tetrafluoroborate promoted cis-trans isomerization of 1,3,5-trimethyl-1,3,5-triphenylcyclotrisiloxane (1) in DMSO-d6 were studied. The isomerization equilibrium constant K are within the range of 3.74-3.30 from 22 to 47 °C. Thermodynamic parameters of ΔH° and ΔS° for the isomerization were −0.95 kcal/mol and −0.59 cal/mol-K respectively. The isomerization rate is first order in [cis-1] and second order in [RnNH4−nBF4]. Both components of RnNH4−n+ and BF4 are essential for the catalytic cis-trans isomerization. The catalytic strength follows the decreasing order of +H3N(CH2)6NH3+>n-C8H17NH3+>n-C16H33NH3+>Me3CNH3+>PhCH2NH3+>Et2NH2+?Ph2CHNH3+, Et3NH+. Inversion region was observed in the plot of ln(kf/T) versus (1/T) with the ceiling located at around 38 °C. The positive activation enthalpy of 9 kcal/mol was estimated at 22-32 °C. The activation enthalpy turns to be slightly negative at T>38 °C.  相似文献   

4.
Two polymorphs of an organic-inorganic hybrid compound, Fe(2,2′-bpy)(HPO4)(H2PO4) (1 and 2) (2,2′-bpy=2,2′-bipyridine), have been synthesized by hydrothermal methods and structurally characterized by single-crystal X-ray diffraction, thermogravimetric analysis, and magnetic susceptibility. Crystal data are as follows: Polymorph 1, monoclinic, space group P21/n (No. 14), a=10.904(2) Å, b=6.423(1) Å, c=19.314(3) Å, β=101.161(3)°, and Z=4; Polymorph 2, monoclinic, space group P21/c (No. 14), a=11.014(1) Å, b=15.872(2) Å, c=8.444(1) Å, β=109.085(3)°, and Z=4. Polymorph 1 adopts a chain structure in which each iron atom is coordinated by two nitrogen atoms from 2,2′-bpy ligand and four phosphate oxygen atoms. These infinite chains are extended into a 3-D supramolecular array via π-π stacking interactions of the lateral 2,2′-bpy ligands. The structure of polymorph 2 consists of the same building units, namely FeO4N2 octahedron, HPO4 and H2PO4 tetrahedra, and 2,2′-bpy ligand, which are linked through their vertices forming an undulated sheetlike structure with 4,12 network. Adjacent layers are extended into a 3-D array via π-π stacking interactions of the aromatic groups. Magnetic susceptibility measurement results confirm that the iron atoms in both compounds are present in the +3 oxidation state.  相似文献   

5.
Electrolytic conductivities of some sodium salts (NaI, NaSCN, CH3COONa) have been studied in 0, 25, 50 and 75 mass% ethane-1,2-diol + methyl alcohol mixtures at 293.15, 298.15 and 303.15 K. The limiting molar conductivity (Λ°), the association constant (KA) and the distance of closest approach of ion (R) have been evaluated using the Fuoss conductance equation (1978). The association constant (KA) decreases with temperature while it tends to decrease in the order: 0 mass% > 25 mass% > 50 mass% > 75 mass% ethane-1,2-diol + methyl alcohol mixtures. Thermodynamic parameters ΔH°, ΔG° and ΔS° along with the Walden products (Λ°η) are obtained and discussed. The results have been interpreted in terms of ion–solvent interactions and structural changes in the mixed solvents.  相似文献   

6.
A facile and efficient method for one-pot conversion of alcohols into azides using N-(p-toluenesulfonyl)imidazole (TsIm) is described. In this method, alcohols are refluxed with a mixture of NaN3, TsIm and triethylamine in the presence of catalytic amounts of tetra-n-butylammonium iodide (TBAI) in DMF affording the corresponding alkyl azides in good yields. This methodology is highly efficient for various structurally diverse alcohols with selectivity for ROH: 1° > 2° > 3°.  相似文献   

7.
Solubilities of ammonia in basic imidazolium ionic liquids   总被引:1,自引:0,他引:1  
Solubilities of ammonia in four conventional imidazolium ionic liquids: [Cnmim][BF4] (n = 2, 4, 6, 8) have been measured. Isothermally fixed temperatures are 293.15, 303.15, 313.15, 323.15 and 333.15 K; the pressure is from 0 to 1.0 MPa. High solubilities of ammonia are found, and it is also found that the solubilities of ammonia increase when the length of cations’ alkyl increases (the ILs have the same anion), that is: [C8mim]+ > [C6mim]+ > [C4mim]+ > [C2mim]+. The solubility data have been correlated by the Krichevisky–Kasarnovsky equation, and then Henry's constants and partial molar volumes of NH3 at infinite dilution are obtained. The thermodynamic properties such as solution enthalpy (ΔsolH), solution Gibbs free energy (ΔsolG), solution entropy (ΔsolS), and solution heat capacity (ΔsolCp) of these systems are obtained.  相似文献   

8.
Microcalorimetric titrations have been performed in acidic aqueous solution at 25 °C to calculate the complex stability constants (KS) and thermodynamic parameters (ΔG°, ΔH°, and TΔS°) for the stoichiometric 1:1 complexation of lanthanoid(III) nitrates (La-Gd, Tb) with 5,11,17,23-tetrasulfonato-25,26,27,28-tetrakis(hydroxycarbonylmethoxy)calix[4]arene (2) and 5,11,17,23-tetrasulfonato-thiacalix[4]arene (3). Using the present and previous reported data on water-soluble calix[4]arenesulfonates (1) and structurally related analogues 2 and 3, the complexation behavior is discussed comparatively from the thermodynamic point of view. Possessing four carboxyls at the lower rim of parent calix[4]arenesulfonate (1), the derivative 2 displays the enhanced binding abilities for Sm3+. As compared with 1 and 2, p-sulfonatothiacalix[4]arene (3) gives not only the lower binding constants for all of lanthanoid(III) ions but also lower cations selectivity. Thermodynamically, the resulting complexes of lanthanoid(III) ions with 1 and its derivatives 2 and 3 is absolutely entropy-driven in aqueous solution, typically showing larger positive entropy changes. These larger positive entropy changes (TΔS°) and somewhat smaller positive enthalpy changes (ΔH°) are directly contributed to the complexes stability as a compensative consequence.  相似文献   

9.
[Mg1−x Alx(OH)2][(NO3)x, nH2O] Layered Double Hydroxide (LDH) sorbents with variable Mg/Al molar (R=(1−x)/x) ratios were investigated for adsorption of azo dye, orange II (OII) at various pH and temperature conditions. Mg2AlNO3 displays the highest adsorption capacity with 3.611 mmol of OII per gram of Mg2AlNO3 at 40 °C. Adsorption isotherms have been fitted using the Langmuir model and free energy of adsorption (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were calculated. The experimental values for ΔG° in temperature range between 10 and 40 °C were found to be negative indicating that a spontaneous process occurred. Positive calculated enthalpy values, characteristic of an endothermic process were found. Characterization of solids (PXRD, FTIR, UV-vis, TGA/DTA, adsorption isotherm BET analysis, SEM and Zetametry) before and after adsorption showed that adsorption proceeds in two steps. First, adsorption occurs at the LDH surface, followed by intercalation via anion exchange.  相似文献   

10.
The reaction of Os3(CO)12 with an excess of 1-hydroxypyridine-2-thione and Me3NO gives three mononuclear osmium complexes Os(CO)22-SC5H4N(O))2 (1), Os(CO)22-SC5H4N(O))(η2-SC5H4N) (2), and Os(CO)22-SC5H4N)2 (3). The results of single-crystal X-ray analyses reveal that complex 1 contains two O,S-chelate pyridine-2-thione N-oxide (PyOS) ligands, whereas complex 2 contains one O,S-chelate PyOS and one N,S-chelate pyridine-2-thiolate group. The unique structure of 2 provides evidence of the pathway for this transformation. When this reaction was monitored by 1H NMR spectroscopy the triosmium complexes Os3(CO)10(μ-H)(μ-η1-S-C5H4N(O)) (4) and Os3(CO)9(μ-H)(μ-η12-SC5H4N(O)) (5) were identified as intermediates in the formation of the mononuclear final products 1-3. The proposed pathway is further supported by the observation of several dinuclear osmium intermediates by electrospray ionization mass spectrometry. In addition, the reaction of Os3(CO)12 with 1-hydroxypyridine-2-thione in the absence of Me3NO at 90 °C generated mononuclear complex 2 as the major product along with smaller amounts of complexes 1 and 3. These results suggest that the N-oxide facilitates the decarbonylation reaction. Crystal data for 1: monoclinic, space group C2/c, a = 26.9990(5) Å, b = 7.6230(7) Å, c = 14.2980(13) Å, β = 101.620(2)°, V = 2882.4(4) Å3, Z = 8. Crystal data for 2: monoclinic, space group C2/c, a = 5.7884(3) Å, b = 13.9667(7) Å, c = 17.2575(9) Å, β = 96.686(1)°, V = 1385.69(12) Å3, Z = 4.  相似文献   

11.
The thermodynamic properties, PVTx (TS, PS, ρS), (∂P/∂T)VX, and CVVTx, of three microemulsions (water + n-octane + sodium dodecylsulfate + 1-pentanol) with composition of solution-1: 0.0777 (H2O):0.6997 (n-C8H18):0.0777 (SDS):0.1449 (1-C5H11OH) mass fraction; solution-2: 0.6220 (H2O):0.1555 (n-C8H18):0.0777 (SDS):0.1448 (1-C5H11OH) mass fraction; and solution-3: 0.2720 (H2O):0.5054 (n-C8H18):0.0777 (SDS):0.1449 (1-C5H11OH) mass fraction were measured. Sodium dodecylsulfate (SDS) was used as an ionic surfactant, 1-pentanol used as stabilizer (cosurfactant), and n-octane as oil component in aqueous solution. A high-temperature, high-pressure, adiabatic, and nearly constant-volume calorimeter supplemented by quasi-static thermogram technique was used for the measurements. Measurements were made at eight densities (isochores) between 475.87 and 919.03 kg m−3. The range of temperature was from 275 to 536 K and pressure range was up to 138 bar. Uncertainty of the pressure, density, derivative (∂P/∂T)VX, and heat capacity measurements are estimated to be 0.25%, 0.02%, 0.12-1.5%, and 2.5%, respectively. Temperatures at liquid-gas phase transition curve, TS(ρ), for each measured densities (isochores) were determined using a quasi-static thermogram technique. The uncertainty of the phase transition temperature measurements is about ±0.02 K. The effect of temperature, density, and concentration on the heat capacity of the microemulsions is discussed. Along the isochore of 438.40 kg m−3 at temperatures above 525.44 K for the first solution the precipitation of the solid phase (SDS) was found.  相似文献   

12.
A novel layered vanadium arsenate [V4O7(HAsO4)2(o-phen)2] 1 (o-phen=o-phenanthroline) was synthesized by the hydrothermal reaction of V2O5, ZnCl2, Na2HAsO4·7H2O, o-phenanthroline (o-phen) and water. Its structure was determined by elemental analyses, ESR spectrum, XPS spectrum, TG analysis, IR spectrum and the single-crystal X-ray diffraction. Compound 1 crystallizes in monoclinic system, space group P2/c, a=10.122(2) Å, b=9.867(2) Å, c=15.367(3) Å, β=102.83(3)°, V=1496.4(5) Å3, Z=1, λ(MoKα)=0.71073 Å, (R(F)=0.0397 for 3422 reflections). Data were collected on a Rigaku R-AXIS RAPID IP diffractometer at 293 K in the range of 2.06°<θ<27.48°. The title compound contains an unusual two-dimensional (2D) As-V-O layer with four-, six- and eight-membered rings. The chelating o-phen ligands project perpendicularly above and below the undulating layer. 1 represents the first example of 2D inorganic vanadium arsenate backbone grafted with the directly coordinated organic ligands. Furthermore, the 3D supermolecular architecture is formed by π-π stacking interactions of the o-phen groups between adjacent layers.  相似文献   

13.
A new pentacoordinated ferrous compound [TPAFeCl]+ (TPA = tris(2-pyridylmethyl)amine) was synthesized from the reaction between H3TPA(ClO4)3 and Fe(PnPr3)2Cl2 in MeCN. The unique trigonal bipyramidal [TPAFeCl]+ complex was characterized as a S = 2 high spin complex based on the crystallographic structure, magnetic susceptibility, 1H NMR spectrum and semi-empirical ZINDO/S calculations. Crystal of [TPAFeCl]2(FeCl4)(MeCN)2 was monoclinic with a = 12.019(2) Å, b = 27.550(5) Å, c = 14.138(2) Å, β = 94.168(3)°, V = 4668.9(13) Å3, space group C/c, and the unit cell contained a racemic mixture of Δ and Λ isomers with ferrous tetrachloride anion.  相似文献   

14.
A novel thorium (IV) coordination polymer, Th(C5H2N2O4)2(H2O)2 (1), has been prepared under the hydrothermal reaction of thorium nitrate tetrahydrate and 3,5-pyrazoledicarboxylic acid (H3pdc). Compound 1 (orthorhombic, P212121, a=6.9362(5) Å, b=10.7806(8) Å, c=17.9915(14) Å, Z=2, R1=0.0210, wR2=0.0470) consists of thorium metal centers connected via H3pdc linkages to form an overall three-dimensional structure containing π-π interactions between the pyrazole rings. 2,3-Pyrazinedicarboxylic acid (H2pzdc) was explored as well to (1) study the effect of the location of the carboxylic groups around the aromatic ring and (2) produce heterometallic compounds. Thorium (IV) and copper (II) were combined with H2pzdc, resulting in an interesting decomposition reaction characterized though the isolation of Th(C2O4)2(H2O)2·2H2O (2) (monoclinic, C2/c, a=13.8507(12) Å, b=7.8719(7) Å, c=10.7961(16) Å, β=118.0310(10)°, Z=2, R1=0.0160, wR2=0.0349), Cu(C6H2N2O4) (3) (monoclinic, C2/c, a=11.499(3) Å, b=7.502(2) Å, c=7.402(2) Å, β=93.892(5)°, Z=4, R1=0.0472, wR2=0.0745) and Cu(C5H3N2O2)(NO3)(H2O) (4). The capture of these species provides mechanistic evidence for the formation of the oxalate anions observed in 2 via the decarboxylation of H2pzdc to yield the linker in 4: 2-pyrazinecarboxylate anions.  相似文献   

15.
Layered zirconium benzylamino-N,N-dimethylphosphonate phosphate (ZBMPA) was prepared by the reaction of zirconyl chloride with benzylamino-N,N-dimethylphosphonic acid (H2BMPA) and phosphoric acid in the presence of hydrofluoric acid. The intercalation of n-alkylamines (n-butylamine, n-heptylamine and n-decylamine) into ZBMPA was primarily investigated at room temperature. These materials were characterized by elemental analysis, ICP, XRD, SEM, FT-IR, Raman spectra, TG and DSC. The composition of ZBMPA is Zr(HPO4)(C6H5CH2N(CH2PO3)2)0.5 · 2.0H2O. The interlayer distance of ZBMPA, n-butylamine, n-heptylamine and n-decylamine intercalation compounds is 2.03, 2.58, 2.52 and 3.17 nm, respectively. ZBMPA and the n-alkylamine intercalation compounds are different in the morphology and vibration spectra. Thermogravimetries of all materials obtained reveal three step mass losses at temperatures of up to 1000 °C. These results indicate that n-alkylamines are intercalated into the galleries of host ZBMPA.  相似文献   

16.
A new one-dimensional molybdenum oxide compound with manganese-o-phen subunit: [Mn(o-phen)(H2O)MoO4]·H2O (1) (o-phen=o-phenanthroline) was synthesized by thehydrothermal reaction of Na2MoO4·2H2O, MnSO4·H2O, oxalic acid, o-phenanthroline (o-phen) and water. Its structure was determined by elemental analyses, ESR spectrum, TG analysis, IR spectrum and single-crystal X-ray diffraction. Compound 1 crystallizes in triclinic system, space group P-1 with a=7.0401(2) Å, b=10.4498(2) Å, c=10.5720(2) Å, α=73.26(7)°, β=83.34(8)°, γ=77.33(9)°, V=725.5089(0) Å3, Z=2, and R1=0.0322 for 2337 observed reflections. Compound 1 exhibits one-dimensional chain structure. The chains are linked up via hydrogen bonding to 2D layers, which are further assembled through π-π stacking interactions to a 3D supermolecular structure.  相似文献   

17.
The new pyrazine-pillared solids, AgReO4(C4H4N2) (I) and Ag3Mo2O4F7(C4H4N2)3 (C4H4N2=pyrazine, pyz) (II), were synthesized by hydrothermal methods at 150 °C and characterized using single crystal X-ray diffraction (IP21/c, No. 14, Z=4, a=7.2238(6) Å, b=7.4940(7) Å, c=15.451(1) Å, β=92.296(4)°; IIP2/n, No. 13, Z=2, a=7.6465(9) Å, b=7.1888(5) Å, c=19.142(2) Å, β=100.284(8)°), thermogravimetric analysis, UV-Vis diffuse reflectance, and photoluminescence measurements. Individual Ag(pyz) chains in I are bonded to three perrhenate ReO4- tetrahedra per layer, while each layer in II contains sets of three edge-shared Ag(pyz) chains (π-π stacked) that are edge-shared to four Mo2O4F73- dimers. A relatively small interlayer spacing results from the short length of the pyrazine pillars, and which can be removed at just slightly above their preparation temperature, at >150-175 °C, to produce crystalline AgReO4 for I, and Ag2MoO4 and an unidentified product for II. Both pillared solids exhibit strong orange-yellow photoemission, at 575 nm for I and 560 nm for II, arising from electronic excitations across (charge transfer) band gaps of 2.91 and 2.76 eV in each, respectively. Their structures and properties are analyzed with respect to parent ‘organic free’ silver perrhenate and molybdate solids which manifest similar photoemissions, as well as to the calculated electronic band structures.  相似文献   

18.
A novel compound, [Co(phen)3][V10O26]·H2O, was hydrothermally synthesized and characterized by single-crystal X-ray diffraction. This compound crystallizes in the orthorhombic space group Ccca with a=13.447(3), b=29.936(6), c=23.252(5) Å, V=9360(3) Å3, Z=8 and R=0.0285. Data were collected on a Rigaku R-AXIS RAPID IP diffractometer at 293 K in the range of 1.36<θ<24.99°. The structure of the compound consists of vanadium oxide layers, which are built up from the infinite VO4 chains by corners and edges sharing. The [Co(phen)3]2+ complexes occupy the interlayer space and contact each other via ππ stacking interactions of the phen groups to form infinite one-dimensional chains.  相似文献   

19.
20.
The aim of this study is to validate isotope-dilution electrospray ionization tandem mass spectrometry (ESI-MS-MS) method with a dual-loop cleanup device for simultaneous quantitation of two benzene metabolites, trans, trans-muconic acid (ttMA) and S-phenylmercapturic acid (SPMA), in human urine. In this study, a pooled blank urine matrix from rural residents was adopted for validation of the analytical method. The calibration curve, detection limit, recovery, precision, accuracy and the stability of sample storage for the system have been characterized. Calibration plots of ttMA and SPMA standards spiked into two kinds of urine matrixes over a wide concentration range, 1/32-8-fold biological exposure indices (BEIs) values, showed good linearity (R > 0.9992). The detection limits in pooled urine matrix for ttMA and SPMA were 1.27 and 0.042 μg g−1 creatinine, respectively. For both of ttMA and SPMA, the intra- and inter-day precision values were considered acceptable well below 25% at the various spiked concentrations. The intra- and inter-day apparent recovery values were also considered acceptable (apparent recovery >90%). The ttMA accuracy was estimated by urinary standard reference material (SRM). The accuracy reported in terms of relative error (RE) was 5.0 ± 2.0% (n = 3). The stability of sample storage at 4 or −20 °C were assessed. Urinary ttMA and SPMA were found to be stable for at least 8 weeks when stored at 4 or −20 °C. In addition, urine samples from different benzene exposure groups were collected and measured in this system. Without tedious manual sample preparation procedure, the analytical system was able to quantify simultaneously ttMA and SPMA in less than 20 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号