首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The crystal structures of three new intermetallic ternary compounds in the LnNiSb3 (Ln=Pr, Nd and Sm) family have been characterized by single crystal X-ray diffraction. PrNiSb3, NdNiSb3 and SmNiSb3 all crystallize in an orthorhombic space group, Pbcm (No. 57), Z=12, with , , , and ; , , , and ; and , , , and , for Ln=Pr, Nd and Sm, respectively. These compounds consist of rare-earth atoms located above and below layers of nearly square, buckled Sb nets, along with layers of highly distorted edge- and face-sharing NiSb6 octahedra. Resistivity data indicate metallic behavior for all three compounds. Magnetization measurements show antiferromagnetic behavior with (PrNiSb3), 4.6 K (NdNiSb3), and 2.9 K (SmNiSb3). Effective moments of 3.62 μB, 3.90 μB and 0.80 μB are found for PrNiSb3, NdNiSb3 and SmNiSb3, respectively, and are consistent with Pr3+ (f 2), Nd3+ (f 3), and Sm3+ (f 4).  相似文献   

2.
A powder sample of Sr3FeMoO7 was synthesized by solid-state reaction in reduced atmosphere (5% H2/Ar). At room temperature, Sr3FeMoO7 crystallizes in a typical Ruddlesden-Popper (n=2) structure in the space group I4/mmm, and . The structure refinement indicates that the Fe and Mo ions are randomly distributed in a single B-site with small fraction of B-site and oxygen vacancies. At low temperature, long-range magnetic interaction was observed. The antiferromagnetic magnetic interaction can be described with a large unit cell, and cm=cn, in the magnetic space group An′.  相似文献   

3.
A novel ternary borate oxide, lead bismuth boron tetraoxide, PbBiBO4, has been prepared by solid-state reaction at temperature below 800 °C. The single-crystal X-ray structural analysis showed that PbBiBO4 crystallizes in the monoclinic space group P21/n with , , , β=91.48(1), Z=4. It represents a new structure type in which distorted BiO69− octahedra are connected to each other in corner- and edge-sharing manner to form two-dimensional layers that are bridged by B atoms of BO3 triangles giving rise to a three-dimensional framework, with channels parallel to the [0 1 0] direction accommodating the pyramidally coordinated Pb2+ cations.  相似文献   

4.
Ln3Co4Sn13 (Ln=La, Ce) have been synthesized by flux growth and characterized by single crystal X-ray diffraction. These compounds adopt the Yb3Rh4Sn13-type structure and crystallize in the cubic space group (No. 223) with Z=2. Lattice parameters at 298 K are , , and , for the La and Ce analogues, respectively. The crystal structure consists of an Sn-centered icosahedron at the origin of the unit cell, which shares faces with eight Co trigonal prisms and 12 Ln-centered cuboctahedra. Magnetization data at 0.1 T show paramagnetic behavior down to 1.8 K for Ce3Co4Sn13, with per Ce3+, while conventional type II superconductivity appears below 2.85 K in the La compound. Electrical resistivity and specific heat data for the La compound show a corresponding sharp superconducting transition at Tc∼2.85 K. The entropy and resistivity data for Ce3Co4Sn13 show the existence of the Kondo effect with a complicated semiconducting-like behavior in the resistivity data. In addition, a large enhanced specific heat coefficient at low T with a low magnetic transition temperature suggests a heavy-fermionic character for the Ce compound. Herein, the structure and physical properties of Ln3Co4Sn13 (Ln=La, Ce) are discussed.  相似文献   

5.
6.
The crystal structure of Nb22O54 is reported for the first time, and the structure of orthorhombic Nb12O29 is reexamined, resolving previous ambiguities. Single crystal X-ray and electron diffraction were employed. These compounds were found to crystallize in the space groups P2/m (, , , β=102.029(3)°) and Cmcm (, , ), respectively and share a common structural unit, a 4×3 block of corner sharing NbO6 octahedra. Despite different constraints imposed by symmetry these blocks are very similar in both compounds. Within a block, it is found that the niobium atoms are not located in the centers of the oxygen octahedra, but rather are displaced inward toward the center of the block forming an apparent antiferroelectric state. Bond valence sums and bond lengths do not show the presence of charge ordering, suggesting that all 4d electrons are delocalized in these compounds at the temperature studied, T=200 K.  相似文献   

7.
Single crystals of a new form of L-Ta2O5 with a 19×b superstructure have been synthesised by flux growth. The phase is most likely stabilised by the incorporation of a small amount of lithium (0.14 wt% Li) from the flux. The phase has C-centred monoclinic symmetry with , (), , γ=90.00(1)°. The structure was refined in space group C112/m to R1=0.044 for 814 unique reflections with F>4σ(F). The structure can be described as comprising chains of edge-shared TaO7 pentagonal bipyramids that are regularly folded at (010) planes to give sinusoidal chains along [010]. These chains are interconnected along [100] and [001] by corner sharing, creating inter-chain regions that are occupied by isolated TaO6 octahedra and pairs of corner-shared octahedra. A comparison with published data for high-quality refinements of related structures has led to the development of a general model that can explain the structural chemistry variations in the known L-Ta2O5-related structures. A shorthand notation is presented for representing the structures, based on the sequence along [010] of the interchain octahedra.  相似文献   

8.
9.
We have determined the crystal structure of the title compound, which has a triclinic cell with cell parameters of , , , α=76.617°, β=84.188°, γ=74.510° and space group . The crystal structure suggests the chemical formula CoMoO4·3/4H2O. The structure consists of MoO4 tetrahedra and CoO6 octahedra, confirming the earlier X-ray absorption near-edge spectroscopic (XANES) investigation on the hydrate. The comparison of the crystal structures of the hydrate and the α-,β-, and hp-phases shows that the hydrate exhibits metal cation coordinations similar to those of the β-phase, but had arrangements of CoO6 and MoOn polyhedra similar to those of the hp-phase.  相似文献   

10.
Rare earth ions (Eu3+ and Dy3+)-doped Gd2(WO4)3 phosphor films were prepared by a Pechini sol-gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM) and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting powders and films. The results of XRD indicate that the films begin to crystallize at 600°C and the crystallinity increases with the elevation of annealing temperatures. The film is uniform and crack-free, mainly consists of closely packed fine particles with an average grain size of 80 nm. Owing to an energy transfer from WO42− groups, the rare earth ions show their characteristic emissions in crystalline Gd2(WO4)3 phosphor films, i.e., (J=0, 1, 2, 3; J′=0, 1, 2, 3, 4, not in all cases) transitions for Eu3+ and (J=13/2, 15/2) transitions for Dy3+, with the hypersensitive transitions (Eu3+) and (Dy3+) being the most prominent groups, respectively. Both the lifetimes and PL intensity of the Eu3+ () and Dy3+ () increase with increasing the annealing temperature from 500°C to 800°C, and the optimum doping concentrations for Eu3+ and Dy3+ are determined to be 30 and 6 at% of Gd3+ in Gd2(WO4)3 film host lattices, respectively.  相似文献   

11.
The novel compound Ca2Co1.6Ga0.4O5 with brownmillerite (BM) structure has been prepared from citrates at 950 °C. The crystal structure of Ca2Co1.6Ga0.4O5 was refined, from neutron powder diffraction (NPD) data, in space group Pnma, , , , χ2=1.798, , Rwp=0.0378 and Rp=0.0292. On the basis of the NPD refinement the compound was found to be a G-type antiferromagnet (space group Pnma) at room temperature, with the magnetic moments of cobalt atoms directed along chains of tetrahedra in the BM structure. Electron diffraction and electron microscopy studies revealed disorder in the crystallites, which can be interpreted as the presence of slabs with BM-type structure of Pnma and I2mb symmetry.  相似文献   

12.
We have studied the structural evolution of monoclinic BaZr(PO4)2 during heating up to 835 K by Raman spectroscopy. In agreement with previous studies we found a first-order phase transition at about 730 K during heating while upon cooling the reverse transition occurs at 705 K. However, some disagreement about the crystal structure of the high-temperature polymorph occurs in the literature. While the space group has not yet been determined, the X-ray diffraction pattern of the high-temperature phase has been indexed on either an orthorhombic or a hexagonal unit cell. We found that the number of Raman active internal PO4 vibrational modes decrease from nine to six during the transition. A group theoretical survey through all orthorhombic, trigonal, and hexagonal factor groups revealed that the observed number of vibrations would only be consistent with the Ba and Zr atoms located at a site, the P and two O atoms at a C3v(3m), and six O atoms at a Cs(m) site in the D3d factor group. Based on our Raman data, the space group of the high-temperature polymorph is thus either , , or .  相似文献   

13.
CdVO3−δ and solid solutions of Cd1−xNaxVO3 with the GdFeO3-type perovskite structure were prepared using a high-pressure (6 GPa) and high-temperature technique. No significant oxygen and cation deficiency was found in CdVO3. Cd1−xNaxVO3 are formed in the compositional range of 0?x?0.2. CdVO3 and Cd1−xNaxVO3 demonstrate metallic conductivity and Pauli paramagnetism between 2 and 300 K. A large electronic contribution to the specific heat (γ=13.4 and ) for CdVO3 and Cd0.8Na0.2VO3, respectively) was observed at low temperatures due to the strongly correlated electrons. Crystal structures of CdVO3 and Cd0.8Na0.2VO3 were refined by X-ray powder diffraction: space group Pnma; Z=4; , , and for CdVO3 and , , and for Cd0.8Na0.2VO3.  相似文献   

14.
An extensive investigation of the ferromagnetic compound TlCo2S2 has resulted in new information on the electronic and magnetic structure. Electronic structure calculations showed that magnetic ordering is energetically favorable with a clear driving force for ferromagnetic coupling within the cobalt layers. TlCo2S2 is metallic and the conductivity is due to holes in the valence band. XPS single crystal measurements did not show evidence of mixed oxidation states of cobalt. Neutron powder diffraction resulted in a ferromagnetic structure with the magnetic moment in the ab-plane. The derived magnetic moment of the cobalt atom is at 10 K and is in very good agreement with the value, at 10 K, inferred from the magnetic hysteresis curve.  相似文献   

15.
A series of perovskites with the general formula La1−xAxCrO3−δ (A=Ca or Sr) have been synthesized in the solid solution range 0.0<x?0.3 and 0.0?δ?0.5x with a variety of heat treatments. High-temperature drop solution calorimetry in molten 2PbO·B2O3 at 1080 K was performed to determine their enthalpies of formation from oxides at room temperature. The enthalpy of oxidation involved in the reaction is roughly independent of oxygen nonstoichiometry (δ) in each series with a given dopant composition, but varies with composition (x). The values change from −620±260 to −280±80 kJ/mol O2 when x=0.1-0.3 for Ca-doped samples, and from −440±150 to −290±50 kJ/mol O2 for Sr-doped ones. This dependence of enthalpy of oxidation on composition suggests oxygen vacancies are increasingly short-range ordered in reduced samples. The higher oxidation state of chromium is stabilized by the substitution of alkaline earth ions, but with increasing doping, the enthalpy of formation of the fully oxidized sample in both Ca and Sr-doped systems becomes more endothermic. This destabilization effect is attributed to the large endothermic enthalpy of oxygen vacancy formation (395±30 kJ/mol of ) for the reaction (A=Ca or Sr) that over-rides the exothermic enthalpies of oxidation. At a given composition, Sr-doped LaCrO3 is more stable than its Ca-doped counterpart, which is consistent with basicity arguments.  相似文献   

16.
Ferromagnetic-phase transition in spinel-type CuCr2Te4 has been clearly observed. CuCr2Te4 is a telluride-spinel with the lattice constant , which has been synthesized successfully. The heat capacity exhibits a sharp peak due to the ferromagnetic-phase transition with the Curie temperature . This value of TC corresponds exactly to that of the negative peak of dM/dT in low field of 1.0 Oe. The magnetic susceptibility shows the Curie-Weiss behavior between 380 and 650 K with the effective magnetic moment /Cr-ion and the Weiss constant . The low temperature magnetization indicates the spin-wave excitations, where the existence of first term of Bloch T3/2 law and the next T5/2 term are verified experimentally. This spin-wave excitation is detected up to approximately 250 K which is a fairly high temperature.  相似文献   

17.
A novel non-centrosymmetric borate, BiCd3(AlO)3(BO3)4, has been prepared by solid state reaction methods below 750 °C. Single-crystal XRD analysis showed that it crystallizes in the hexagonal group P63 with a=10.3919(15) Å, c=5.7215(11) Å, Z=2. In its structure, AlO6 octahedra share edges to form 1D chains that are bridged by BO3 groups through sharing O atoms to form the 3D framework. The 3D framework affords two kinds of channels that are occupied by Bi3+/Cd2+ atoms only or by Bi3+/Cd2+ atoms together with BO3 groups. The IR spectrum further confirmed the presence of BO3 groups. Second-harmonic-generation measurements displayed a response of about 0.5×KDP (KH2PO4). UV-vis diffuse reflectance spectrum showed a band gap of about 3.19 eV. Solid-state fluorescence spectrum exhibited the maximum emission peak at around 390.6 nm. Band structure calculations indicated that it is an indirect semiconductor.  相似文献   

18.
The new magnesium rhodium boron compound Mg8Rh4B has been synthesized by reaction of the metal powders with crystalline or amorphous boron or the RhB precursor. The crystal structure of Mg8Rh4B was solved using single-crystal X-ray diffraction data (space group , , Z=8, 174 reflections, RF=0.016). The crystal structure can be described as a filled Ti2Ni type where the interstitial sites 8b (), located at the center of two nested Mg4Rh4 tetrahedra, are occupied by boron atoms. Taking into account the absence of the Ti2Ni-type phase in the binary Mg-Rh system, the boron atoms can be considered as stabilizing this structural motif. From the bonding analysis with the electron localization function the crystal structure is described as covalently bonded [Rh4B]3− anions, embedded in a cationic magnesium matrix.  相似文献   

19.
A new ternary compound, Ce2PdGa10, has been synthesized using Ga flux and characterized by single-crystal X-ray diffraction. Ce2PdGa10 adopts a tetragonal structure in the I4/mmm space group and is isostructural to Ce2NiGa10. Lattice parameters are , , , and Z=2. The compound is metallic (dρ/dT>0), with the resistance decreasing roughly linearly with temperature from 300 to 175 K. The magnetic susceptibility of Ce2PdGa10 is consistent with local-moment paramagnetism and no long-range magnetic ordering occurs down to 2 K. A large positive magnetoresistance over 200% is observed at 2 K for fields of 9 T. In this paper, we present the structure and physical properties of Ce2PdGa10 and compared them to CePdGa6.  相似文献   

20.
The enthalpies of dilution have been measured for aqueous Li2B4O7 solutions from 0.0212 to 2.1530 mol kg−1 at 298.15 K. The relative apparent molar enthalpies, L?, and relative partial molar enthalpies of the solvent and solute, and were calculated. The thermodynamic properties of the complex aqueous solutions were represented with a modified Pitzer ion-interaction model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号