首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hung MC  Tsai MC  Lee GH  Liaw WF 《Inorganic chemistry》2006,45(15):6041-6047
Reaction of Fe(CO)2(NO)2 and sparteine/tetramethylethylenediamine (TMEDA) in tetrahydrofuran afforded the electron paramagnetic resonance (EPR)-silent, neutral {Fe(NO)2}10 dinitrosyliron complexes (DNICs) [(sparteine)Fe(NO)2] (1) and [(TMEDA)Fe(NO)2] (2), respectively. The stable and isolable anionic {Fe(NO)2}9 DNIC [(S(CH2)3S)Fe(NO)2]- (4), with a bidentate alkylthiolate coordinated to a {Fe(NO)(2)} motif, was prepared by the reaction of [S(CH2)3S]2- and the cationic {Fe(NO)2}9 [(sparteine)Fe(NO)2]+ (3) obtained from the reaction of complex 1 and [NO][BF4] in CH(3)CN. Transformation from the neutral complex 1 to the anionic complex 4 was verified via the cationic complex 3. Here complex 3 acts as an {Fe(NO)2}-donor reagent in the presence of thiolates. The EPR spectra of complexes 3 and 4 exhibit an isotropic signal with g = 2.032 and 2.031 at 298 K, respectively, the characteristic g value of {Fe(NO)2}9 DNICs. On the basis of N-O/Fe-N(O) bond lengths of the single-crystal X-ray structures of the {Fe(NO)2}9/{Fe(NO)2}10 DNICs, the oxidation level of the {Fe(NO)2} core of DNICs can be unambiguously assigned. The mean N-O distances falling in the range of 1.214(6)-1.189(4) A and the Fe-N(O) bond distances in the range of 1.650(7)-1.638(3) A are assigned as the neutral {Fe(NO)(2)}(10) DNICs. In contrast, the mean N-O bond distances ranging from 1.178(3) to 1.160(6) A and the mean Fe-N(O) bond distances ranging from 1.695(3) to 1.661(4) A are assigned as the anionic/neutral/cationic {Fe(NO)2}9 DNICs. In addition, an EPR spectrum in combination with the IR nu(NO) (the relative position of the nu(NO) stretching frequencies and their difference Deltanu(NO)) spectrum may serve as an efficient tool for discrimination of the existence of the anionic/cationic/neutral {Fe(NO)2}9 DNICs and the neutral {Fe(NO)2}10 DNICs.  相似文献   

2.
Reaction of Fe(CO)2(NO)2 and [(ON)Fe(S,S-C6H3R)2]- (R = H (1), CH3 (1-Me))/[(ON)Fe(SO2,S-C6H4)(S,S-C6H4)]- (4) in THF afforded the diiron thiolate/sulfinate nitrosyl complexes [(ON)Fe(S,S-C6H3R)2 Fe(NO)2]- (R = H (2), CH3 (2-Me)) and [(ON)Fe(S,SO2-C6H4)(S,S-C6H4)Fe(NO)2]- (3), respectively. The average N-O bond lengths ([Fe(NO)2] unit) of 1.167(3) and 1.162(4) A in complexes 2 and 3 are consistent with the average N-O bond length of 1.165 A observed in the other structurally characterized dinitrosyl iron complexes with an {Fe(NO)2}9 core. The lower nu(15NO) value (1682 cm(-1) (KBr)) of the [(15NO)FeS4] fragment of [(15NO)Fe(S,S-C6H3CH3)2 Fe(NO)2]- (2-Me-15N), compared to that of [(15NO)Fe(S,S-C6H3CH3)2]- (1-Me-15N) (1727 cm(-1) (KBr)), implicates the electron transfer from {Fe(NO)2}10 Fe(CO)2(NO)2 to complex 1-Me/1 may occur in the process of formation of complex 2-Me/2. Then, the electronic structures of the [(NO)FeS4] and [S2Fe(NO)2] cores of complexes 2, 2-Me, and 3 were best assigned according to the Feltham-Enemark notation as the {Fe(NO)}7-{Fe(NO)2}9 coupling (antiferromagnetic interaction with a J value of -182 cm(-1) for complex 2) to account for the absence of paramagnetism (SQUID) and the EPR signal. On the basis of Fe-N(O) and N-O bond distances, the dinitrosyliron {L2Fe(NO)2} derivatives having an Fe-N(O) distance of approximately 1.670 A and a N-O distance of approximately 1.165 A are best assigned as {Fe(NO)2}9 electronic structures, whereas the Fe-N(O) distance of approximately 1.650 A and N-O distance of approximately 1.190 A probably imply an {Fe(NO)2}10 electronic structure.  相似文献   

3.
This paper investigates the interaction between five-coordinate ferric hemes with bound axial imidazole ligands and nitric oxide (NO). The corresponding model complex, [Fe(TPP)(MI)(NO)](BF4) (MI = 1-methylimidazole), is studied using vibrational spectroscopy coupled to normal coordinate analysis and density functional theory (DFT) calculations. In particular, nuclear resonance vibrational spectroscopy is used to identify the Fe-N(O) stretching vibration. The results reveal the usual Fe(II)-NO(+) ground state for this complex, which is characterized by strong Fe-NO and N-O bonds, with Fe-NO and N-O force constants of 3.92 and 15.18 mdyn/A, respectively. This is related to two strong pi back-bonds between Fe(II) and NO(+). The alternative ground state, low-spin Fe(III)-NO(radical) (S = 0), is then investigated. DFT calculations show that this state exists as a stable minimum at a surprisingly low energy of only approximately 1-3 kcal/mol above the Fe(II)-NO(+) ground state. In addition, the Fe(II)-NO(+) potential energy surface (PES) crosses the low-spin Fe(III)-NO(radical) energy surface at a very small elongation (only 0.05-0.1 A) of the Fe-NO bond from the equilibrium distance. This implies that ferric heme nitrosyls with the latter ground state might exist, particularly with axial thiolate (cysteinate) coordination as observed in P450-type enzymes. Importantly, the low-spin Fe(III)-NO(radical) state has very different properties than the Fe(II)-NO(+) state. Specifically, the Fe-NO and N-O bonds are distinctively weaker, showing Fe-NO and N-O force constants of only 2.26 and 13.72 mdyn/A, respectively. The PES calculations further reveal that the thermodynamic weakness of the Fe-NO bond in ferric heme nitrosyls is an intrinsic feature that relates to the properties of the high-spin Fe(III)-NO(radical) (S = 2) state that appears at low energy and is dissociative with respect to the Fe-NO bond. Altogether, release of NO from a six-coordinate ferric heme nitrosyl requires the system to pass through at least three different electronic states, a process that is remarkably complex and also unprecedented for transition-metal nitrosyls. These findings have implications not only for heme nitrosyls but also for group-8 transition-metal(III) nitrosyls in general.  相似文献   

4.
The effect of trans thiolate ligation on the coordinated nitric oxide in ferric heme nitrosyl complexes as a function of the thiolate donor strength, induced by variation of NH-S(thiolate) hydrogen bonds, is explored. Density functional theory (DFT) calculations (BP86/TZVP) are used to define the electronic structures of corresponding six-coordinate ferric [Fe(P)(SR)(NO)] complexes. In contrast to N-donor-coordinated ferric heme nitrosyls, an additional Fe-N(O) sigma interaction that is mediated by the dz2/dxz orbital of Fe and a sigma*-type orbital of NO is observed in the corresponding complexes with S-donor ligands. Experimentally, this is reflected by lower nu(N-O) and nu(Fe-N) stretching frequencies and a bent Fe-N-O moiety in the thiolate-bound case.  相似文献   

5.
The synthesis, structural, and spectroscopic characterization of (nitrosyl)iron(III) porphyrinate complexes designed to have strongly nonplanar porphyrin core conformations is reported. The species have a nitrogen-donor axial ligand trans to the nitrosyl ligand and display planar as well as highly nonplanar porphyrin core conformations. The systems were designed to test the idea, expressly discussed for the heme protein nitrophorin (Roberts, et al. Biochemistry 2001, 40, 11327), that porphyrin core distortions could lead to an unexpected, bent geometry for the FeNO group. For [Fe(OETPP)(1-MeIm)(NO)]ClO(4).C(6)H(5)Cl (H(2)OETPP = octaethyltetraphenylporphyrin), the porphyrin core is found to be severely saddled. However, this distortion has little or no effect on the geometric parameters of the coordination group: Fe-N(p) = 1.990(9) A, Fe-N(NO) = 1.650(2) A, Fe-N(L) = 1.983(2) A, and Fe-N-O = 177.0(3) degrees. For the complex [Fe(OEP)(2-MeHIm)(NO)]ClO(4).0.5CH(2)Cl(2) (H(2)OEP = octaethylporphyrin), there are two independent molecules in the asymmetric unit. The cation denoted [Fe(OEP)(2-MeHIm)(NO)](+)(pla) has a close-to-planar porphyrin core. For this cation, Fe-N(p) = 2.014(8) A, Fe-N(NO) = 1.649(2) A, Fe-N(L) = 2.053(2) A, and Fe-N-O = 175.6(2) degrees. The second cation, [Fe(OEP)(2-MeHIm)(NO)](+)(ruf), has a ruffled core: Fe-N(p) = 2.003(7) A, Fe-N(NO) = 1.648(2) A, Fe-N(L) = 2.032(2) A, and Fe-N-O = 177.4(2) degrees. Thus, there is no effect on the coordination group geometry caused by either type of nonplanar core deformation; it is unlikely that a protein engendered core deformation would cause FeNO bending either. The solid-state nitrosyl stretching frequencies of 1917 cm(-)(1) for [Fe(OEP)(2-MeHIm)(NO)]ClO(4) and 1871 cm(-)(1) for [Fe(OETPP)(1-MeIm)(NO)]ClO(4) are well within the range seen for linear Fe-N-O groups. M?ssbauer data for [Fe(OEP)(2-MeHIm)(NO)]ClO(4) confirm that the ground state is diamagnetic. In addition, the quadrupole splitting value of 1.88 mm/s and isomer shift (0.05 mm/s) at 4.2 K are similar to other (nitrosyl)iron(III) porphyrin complexes with linear Fe-N-O groups. Crystal data: [Fe(OETPP)(1-MeIm)(NO)]ClO(4).C(6)H(5)Cl, monoclinic, space group P2(1)/c, Z = 4, with a = 12.9829(6) A, b = 36.305(2) A, c = 14.0126(6) A, beta = 108.087(1) degrees; [Fe(OEP)(2-MeHIm)(NO)]ClO(4).0.5CH(2)Cl(2), triclinic, space group Ponemacr;, Z = 4, with a = 14.062(2) A, b = 16.175(3) A, c = 19.948(3) A, alpha = 69.427(3) degrees, beta = 71.504(3) degrees, gamma = 89.054(3) degrees.  相似文献   

6.
Jene PG  Ibers JA 《Inorganic chemistry》2000,39(17):3823-3827
The compounds Co(TpivPP) (1), Co(TpivPP)(NO2)(1-MeIm) (2), and Co(TpivPP)(NO2)(1,2-Me2Im) (3) have been synthesized (TpivPP = meso-tetrakis(alpha, alpha, alpha, alpha-o-pivalamidophenyl)porphyrinato dianion), and their structures have been determined with single-crystal X-ray diffraction methods. 1: a = 17.578(1) A, b = 17.596(1) A, c = 20.639(1) A, beta = 115.03(1) degrees, P2(1)/c, Z = 4, T = -120 degrees C. 2: a = 18.522(4) A, b = 18.942(4) A, c = 18.177(4) A, beta = 90.68(3) degrees, C2/c, Z = 4, T = -70 degrees C. 3: a = 18.998(4) A, b = 19.187(4) A, c = 18.000(4) A, beta = 90.96(3) degrees, C2/c, Z = 4, T = -120 degrees C. Compounds 2 and 3 have crystallographically imposed 2-fold axes. In 2 and 3, which represent R-state (relaxed) and T-state (tense) models, respectively, for hemoglobin, the NO2 ligand is bound on the "picket" side to the Co atom, and either 1-MeIm (for 2) or 1,2-Me2Im (for 3) is bound to the Co atom at the sixth coordination site on the sterically unhindered side of the molecule. The average deviations of atoms from the 24-atom porphyrin core are 0.031, 0.129, and 0.117 A for 1, 2, and 3, respectively. The Co atom is -0.043(1) A out of the mean 24-atom porphyrin plane toward the 1-MeIm ligand in 2 and -0.089(1) A out of the plane toward the 1,2-Me2Im ligand in 3. The bonds of both axial ligands in the R-state model 2, 1.898(4) A for Co-N(O2) and 1.995(4) A for Co-N(base), are shorter than the corresponding bonds in the T-state model 3, 1.917(4) A for Co-N(O2) and 2.091(4) A for Co-N(base).  相似文献   

7.
Single-crystal EPR measurements have been performed on the triclinic form of [Fe(OEP)(NO)] (Ellison, M. K.; Scheidt, W. R. J. Am. Chem. Soc. 1997, 119, 7404) and on the isomorphous cobalt derivative [Co(OEP)(NO)] (Ellison, M. K.; Scheidt, W. R. Inorg. Chem. 1998, 37, 382) which has been doped with [Fe(OEP)(NO)]. Principal values of the g tensor determined at room temperature are gmax = 2.106, gmid = 2.057, and gmin = 2.015. The principal direction associated with the minimum g value lies 8 degrees from the Fe-N(NO) direction, 2 degrees from the normal to the heme plane, and 42 degrees from the N-O direction. The direction associated with the maximum g value lies 9 degrees from the normal to the Fe-N-O plane. The fact that the direction of gmin is near the Fe-N(NO) direction is consistent with the dominant role of spin-orbit coupling at the iron atom in determining the g tensor and with the picture of the electronic structure of the compound from restricted calculations, which makes the half-filled orbital mostly dz2 on the iron atom. The hyperfine tensor is nearly isotropic and was only resolved in the doped samples. Principal values of the A tensor determined at room temperature are 40.9, 49.7, and 42.7 MHz. Principal values of the g tensor determined from the doped samples at 77 K are gmax = 2.110, gmid = 2.040, and gmin = 2.012. Principal values of the A tensor are 42.5, 52.8, and 44.1 MHz at 77 K. The small change in g values with temperature is in contrast to the large temperature dependence on g values observed in samples of MbNO (Hori et al. J. Biol. Chem. 1981, 256, 7849).  相似文献   

8.
We use nuclear resonance vibrational spectroscopy (NRVS) to identify the Fe-NO stretching frequency in the NO adduct of myoglobin (MbNO) and in the related six-coordinate porphyrin Fe(TPP)(1-MeIm)(NO). Frequency shifts observed in MbNO Raman spectra upon isotopic substitution of Fe or the nitrosyl nitrogen confirm and extend the NRVS results. In contrast with previous assignments, the Fe-NO frequency of these six-coordinate complexes lies 70-100 cm-1 lower than in the analogous five-coordinate nitrosyl complexes, indicating a significant weakening of the Fe-NO bond in the presence of a trans imidazole ligand. This result supports proposed mechanisms for NO activation of heme proteins and underscores the value of NRVS as a direct probe of metal reactivity in complex biomolecules.  相似文献   

9.
Nitric oxide (NO) is frequently used to probe the substrate-binding site of "spectroscopically silent" non-heme Fe(2+) sites of metalloenzymes, such as superoxide reductase (SOR). Herein we use NO to probe the superoxide binding site of our thiolate-ligated biomimetic SOR model [Fe(II)(S(Me(2))N(4)(tren))](+) (1). Like NO-bound trans-cysteinate-ligated SOR (SOR-NO), the rhombic S = 3/2 EPR signal of NO-bound cis-thiolate-ligated [Fe(S(Me(2))N(4)(tren)(NO)](+) (2; g = 4.44, 3.54, 1.97), the isotopically sensitive ν(NO)(ν((15)NO)) stretching frequency (1685(1640) cm(-1)), and the 0.05 ? decrease in Fe-S bond length are shown to be consistent with the oxidative addition of NO to Fe(II) to afford an Fe(III)-NO(-) {FeNO}(7) species containing high-spin (S = 5/2) Fe(III) antiferromagnetically coupled to NO(-) (S = 1). The cis versus trans positioning of the thiolate does not appear to influence these properties. Although it has yet to be crystallographically characterized, SOR-NO is presumed to possess a bent Fe-NO similar to that of 2 (Fe-N-O = 151.7(4)°). The N-O bond is shown to be more activated in 2 relative to N- and O-ligated {FeNO}(7) complexes, and this is attributed to the electron-donating properties of the thiolate ligand. Hydrogen-bonding to the cysteinate sulfur attenuates N-O bond activation in SOR, as shown by its higher ν(NO) frequency (1721 cm(-1)). In contrast, the ν(O-O) frequency of the SOR peroxo intermediate and its analogues is not affected by H-bonds to the cysteinate sulfur or other factors influencing the Fe-SR bond strength; these only influence the ν(Fe-O) frequency. Reactions between 1 and NO(2)(-) are shown to result in the proton-dependent heterolytic cleavage of an N-O bond. The mechanism of this reaction is proposed to involve both Fe(II)-NO(2)(-) and {FeNO}(6) intermediates similar to those implicated in the mechanism of NiR-promoted NO(2)(-) reduction.  相似文献   

10.
The addition of the strongly pi-bonding ligands CO or tert-butyl isocyanide to the low-spin five-coordinate iron(II) nitrite species [Fe(TpivPP)(NO2)]- (TpivPP = picket fence porphyrin) gives two new six-coordinate species [Fe(TpivPP)(NO2)(CO)]- and [Fe(TpivPP)(NO2)(t-BuNC)]-. These species have been characterized by single-crystal structure determinations and by UV-vis, IR, and M?ssbauer spectroscopies. All evidence shows that in the mixed-ligand iron(II) porphyrin species, [Fe(TpivPP)(NO2)(CO)]-, the two trans, pi-accepting ligands CO and nitrite compete for pi density. The CO ligand however dominates the bonding. The Fe-N(NO2) bond lengths for the two independent anions in the unit cell at 2.006(4) and 2.009(4) A are lengthened compared to other nitrite species with either no trans ligands or non-pi-accepting trans ligands to nitrite. The Fe-C(CO) bond lengths are 1.782(4) A and 1.789(5) A for the two anions. The two Fe-C-O angles at 175.5(4) and 177.5(4) degrees are essentially linear in both anions. The quadrupole splitting for [Fe(TpivPP)(NO2)(CO)]- was determined to be 0.32 mm/s, and the isomer shift was 0.18 mm/s at room temperature in zero applied field. Both of the M?ssbauer parameters are much smaller than those found for six-coordinate low-spin iron(II) porphyrinates with neutral nitrogen-donating ligands as well as iron(II) nitro complexes. However, the M?ssbauer parameters are typical of other six-coordinate CO porphyrinates signifying that CO is the more dominant ligand. The CO stretching frequency of 1974 cm(-1) is shifted only slightly to higher energy compared to six-coordinate CO complexes with neutral nitrogen-donor ligands trans to CO. Crystal data for [K(222)][Fe(TpivPP)(NO2)(CO)].1/2C6H5Cl: monoclinic, space group P2(1)/c, Z = 8, a = 33.548(6) A, b = 18.8172(15) A, c = 27.187(2) A, beta = 95.240(7) degrees, V = 17091(4) A3.  相似文献   

11.
Ru(2)(Fap)(4)Cl and Ru(2)(Fap)(4)(NO)Cl, where Fap is the 2-(2-fluoroanilino)pyridinate anion, were synthesized, and their structural, electrochemical, and spectroscopic properties were characterized. Ru(2)(Fap)(4)Cl, which was obtained by reaction between Ru(2)(O(2)CCH(3))(4)Cl and molten HFap, crystallizes in the monoclinic space group P2(1)/c, with a = 11.2365(4) A, b = 19.9298(8) A, c = 19.0368(7) A, beta = 90.905(1) degrees, and Z = 4. The presence of three unpaired electrons on the Ru(2)(5+) core and the 2.2862(3) A Ru-Ru bond length for Ru(2)(Fap)(4)Cl are consistent with the electronic configuration (sigma)(2)(pi)(4)(delta)(2)(pi*)(2)(delta*)(1). The reaction between Ru(2)(Fap)(4)Cl and NO gas yields Ru(2)(Fap)(4)(NO)Cl, which crystallizes in the orthorhombic space group Pbca, with a = 10.0468(6) A, b = 18.8091(10) A, c = 41.7615(23) A, and Z = 8. The Ru-Ru bond length of Ru(2)(Fap)(4)(NO)Cl is 2.4203(8) A, while its N-O bond length and Ru-N-O bond angle are 1.164(8) A and 155.8(6) degrees, respectively. Ru(2)(Fap)(4)(NO)Cl can be formulated as a formal Ru(2)(II,II)(NO(+)) complex with a linear Ru-N-O group, and the proposed electronic configuration for this compound is (sigma)(2)(pi)(4)(delta)(2)(pi*)(3)(delta*)(1). The binding of NO to Ru(2)(Fap)(4)Cl leads to some structural changes of the Ru(2)(Fap)(4) framework and a stabilization of the lower oxidation states of the diruthenium unit. Also, IR spectroelectrochemical studies of Ru(2)(Fap)(4)(NO)Cl show that NO remains bound to the complex upon reduction and that the first reduction involves the addition of an electron on the diruthenium core and not on the NO axial ligand.  相似文献   

12.
The preparation and characterization of the five-coordinate iron(II) porphyrinate derivative [Fe(TpivPP)(NO3)]- (TpivPP = picket-fence porphyrin) is described. Structural and magnetic susceptibility data support a high-spin state (S = 2) assignment for this species. The anionic axial nitrate ligand is O-bound, through a single O atom, with an Fe-O bond length of 2.069(4) A. The planar nitrate ligand bisects a N(p)-Fe-N(p) angle. The average Fe-N(p) bond length is 2.070(16) A. The Fe atom is located 0.49 A out of the 24-atom mean porphyrin plane toward the nitrate ligand. From solid-state M?ssbauer data, the isomer shift of 0.98 mm/s at 77 K is entirely consistent with high-spin iron(II). However the quadrupole splitting of 3.59 mm/s at 77 K is unusually high for iron(II), S = 2 systems but within the range of other five-coordinate high-spin ferrous complexes with a single anionic axial ligand. Crystal data for [K(222)][Fe(TpivPP)(NO3)] x C6H5Cl: a = 17.888 (5) A, b = 21.500 (10) A, c = 22.514 (11) A, beta = 100.32 (3) degrees, monoclinic, space group P2(1)/n, V = 8519 A3, Z = 4.  相似文献   

13.
The preparation and characterization of the following bis-imidazole and bis-pyridine complexes of octamethyltetraphenylporphyrinatoiron(III), Fe(III)OMTPP, octaethyltetraphenylporphyrinatoiron(III), Fe(III)OETPP, and tetra-beta,beta'-tetramethylenetetraphenylporphyrinatoiron(III), Fe(III)TC(6)TPP, are reported: paral-[FeOMTPP(1-MeIm)(2)]Cl, perp-[FeOMTPP(1-MeIm)(2)]Cl, [FeOETPP(1-MeIm)(2)]Cl, [FeTC(6)TPP(1-MeIm)(2)]Cl, [FeOMTPP(4-Me(2)NPy)(2)]Cl, and [FeOMTPP(2-MeHIm)(2)]Cl. Crystal structure analysis shows that paral-[FeOMTPP(1-MeIm)(2)]Cl has its axial ligands in close to parallel orientation (the actual dihedral angle between the planes of the imidazole ligands is 19.5 degrees ), while perp-[FeOMTPP(1-MeIm)(2)]Cl has the axial imidazole ligand planes oriented at 90 degrees to each other and 29 degrees away from the closest N(P)-Fe-N(P) axis. [FeOETPP(1-MeIm)(2)]Cl has its axial ligands close to perpendicular orientation (the actual dihedral angle between the planes of the imidazole ligands is 73.1 degrees ). In all three cases the porphyrin core adopts relatively purely saddled geometry. The [FeTC(6)TPP(1-MeIm)(2)]Cl complex is the most planar and has the highest contribution of a ruffled component in the overall saddled structure compared to all other complexes in this study. The estimated numerical contribution of saddled and ruffled components is 0.68:0.32, respectively. Axial ligand planes are perpendicular to each other and 15.3 degrees away from the closest N(P)-Fe-N(P) axis. The Fe-N(P) bond is the longest in the series of octaalkyltetraphenylporphyrinatoiron(III) complexes due to [FeTC(6)TPP(1-MeIm)(2)]Cl having the least distorted porphyrin core. In addition to these three complexes, two crystalline forms each of [FeOMTPP(4-Me(2)NPy)(2)]Cl and [FeOMTPP(2-MeHIm)(2)]Cl were obtained. In all four of these cases the axial planes are in nearly perpendicular planes in spite of quite different geometries of the porphyrin cores (from purely saddled to saddled with 30% ruffling). The EPR spectral type correlates with the geometry of the OMTPP, OETPP and TC(6)TPP complexes. For the paral-[FeOMTPP(1-MeIm)(2)]Cl, a rhombic signal with g(1) = 1.54, g(2) = 2.51, and g(3) = 2.71 is consistent with nearly parallel axial ligand orientation. For all other complexes of this study, "large g(max)" signals are observed (g(max) = 3.61 - 3.27), as are observed for nearly perpendicular ligand plane arrangement. On the basis of this and previous work, the change from "large g(max)" to normal rhombic EPR signal occurs between axial ligand plane dihedral angles of 70 degrees and 30 degrees.  相似文献   

14.
We are using the coordinating anions tetrakis(imidazolyl)borate and tetrakis(4-methylimidazolyl)borate to construct new metal-organic framework structures. In this report, we are exploring materials similar in composition to the previously reported layered network structure Pb[B(Im)(4)](NO(3))(nH(2)O). The metal in this compound can be replaced with isoelectronic Tl(I), affording Tl[B(Im)(4)], and the borate can be modified by using 4-methylimidazole, resulting in Pb[B(4-MeIm)(4)](NO(3)) and Tl[B(4-MeIm)(4)]. Like the parent Pb[B(Im)(4)](NO(3))(nH(2)O), Tl[B(Im)(4)] and Tl[B(4-MeIm)(4)] are layered network structures but both lack anions or solvent molecules in the interlayer spacing. The material Pb[B(4-MeIm)(4)](NO(3)), however, exhibits a 3D network structure that lacks an open topology, resulting from the increased stereochemical activity (greater steric bulk toward other ligands) of the 4-methylimidazole ring. Both of the Tl(I) solids display longer M-N bonds than observed in the analogous Pb(II) compounds; these lengths account for the decreased effect of the stereochemical activity of the 4-methylimidazole ring in Tl[B(4-MeIm)(4)].  相似文献   

15.
Tsai ML  Liaw WF 《Inorganic chemistry》2006,45(17):6583-6585
A neutral {Fe(NO)2}9 dinitrosyliron complex (DNIC) [(SC6H4-o-NHCOPh)(Im)Fe(NO)2] (Im = imidazole; 2) was prepared by the reaction of [Fe(mu-SC6H4-o-NHCOPh)(NO)2]2 (1) and 2 equiv of imidazole. In the synthesis of the anionic {Fe(NO)2}9 DNIC [(SC6H4-o-NHCOPh)2Fe(NO)2]- (3), thiolate [SC6H4-o-NHCOPh]- triggers ligand substitution of DNIC 2 to yield DNIC 3. At 298 K, complexes 2 and 3 exhibit well-resolved nine- and five-line electron paramagnetic resonance (EPR) signals at g = 2.031 and 2.029, respectively, the characteristic g value of DNICs. The facile interconversions among the neutral {Fe(NO)2}9 complex 2, the anionic {Fe(NO)2}9 complex 3, and Roussin's red ester 1 were demonstrated. The EPR spectrum (the pattern of hyperfine splitting) in combination with the IR nu(NO) (the relative position of the nu(NO) stretching frequencies) spectrum may serve as an efficient tool for the discrimination of the anionic {Fe(NO)2}9 DNICs, the neutral {Fe(NO)2}9 DNICs, and Roussin's red ester.  相似文献   

16.
The six-coordinate nitrosyl sigma-bonded aryl(iron) and -(ruthenium) porphyrin complexes (OEP)Fe(NO)(p-C(6)H(4)F) and (OEP)Ru(NO)(p-C(6)H(4)F) (OEP = octaethylporphyrinato dianion) have been synthesized and characterized. Single-crystal X-ray structure determinations reveal an unprecedented bending and tilting of the MNO group for both [MNO](6) species as well as significant lengthening of trans axial bond distances. In (OEP)Fe(NO)(p-C(6)H(4)F) the Fe-N-O angle is 157.4(2) degrees, the nitrosyl nitrogen atom is tilted off of the normal to the heme plane by 9.2 degrees, Fe-N(NO) = 1.728(2) A, and Fe-C(aryl) = 2.040(3) A. In (OEP)Ru(NO)(p-C(6)H(4)F) the Ru-N-O angle is 154.9(3) degrees, the nitrosyl nitrogen atom is tilted off of the heme normal by 10.8 degrees, Ru-N(NO) = 1.807(3) A, and Ru-C(aryl) = 2.111(3) A. We show that these structural features are intrinsic to the molecules and are imposed by the strongly sigma-donating aryl ligand trans to the nitrosyl. Density functional-based calculations reproduce the structural distortions observed in the parent (OEP)Fe(NO)(p-C(6)H(4)F) and, combined with the results of extended Hückel calculations, show that the observed bending and tilting of the FeNO group indeed represent a low-energy conformation. We have identified specific orbital interactions that favor the unexpected bending and tilting of the FeNO group. The aryl ligand also affects the Fe-NO pi-bonding as measured by infrared and (57)Fe M?ssbauer spectroscopies. The solid-state nitrosyl stretching frequencies for the iron complex (1791 cm(-)(1)) and the ruthenium complex (1773 cm(-)(1)) are significantly reduced compared to their respective [MNO](6) counterparts. The M?ssbauer data for (OEP)Fe(NO)(p-C(6)H(4)F) yield the quadrupole splitting parameter +0.57 mm/s and the isomer shift 0.14 mm/s at 4.2 K. The results of our study show, for the first time, that bent Fe-N-O linkages are possible in formally ferric nitrosyl porphyrins.  相似文献   

17.
A recent report of the structural and vibrational properties of heme-bound HNO in myoglobin, MbHNO, revealed a long Fe-N(HNO) bond with the hydrogen atom bonded to the coordinated N atom. The Fe-N(H)-O moiety was reported to exhibit an unusually high Fe-N(HNO) stretching frequency relative to those of the corresponding [FeNO]6 and [FeNO]7 porphyrinates, despite the Fe-N(HNO) bond being longer than either of its Fe-N(NO) counterparts. Herein, we present results from density functional theory calculations of an active site model of MbHNO that support the previous assignment and clarify this seemingly contradictory result. The results are consistent with the experimental evidence for a ground-state Fe-N(H)-O structure having a long Fe-N(HNO) bond and a uniquely high nu(Fe)(-)(N(HNO)) frequency. This high frequency is the result of the correspondingly low reduced mass of the normal mode, which is largely attributable to significant motion of the N-bound hydrogen atom. Additionally, the calculations show the Fe-N(H)O bonding in this complex to be remarkably insensitive to whether the HNO and ImH ligand planes are parallel or perpendicular. This is attributed to insensitivities of the Fe-L(axial) characters of molecular orbitals to the relative HNO and ImH orientation in both the parallel and perpendicular conformers.  相似文献   

18.
Potential energy and electron paramagnetic resonance (EPR) g tensor surfaces of model five- and six-coordinated porphyrins were examined. For both types of complexes, the NO ligand is preferably coordinated end-on, with a Fe-N-O bond angle of approximately 140 degrees. In the free five-coordinated structure, NO undergoes free rotation around the axial Fe-N(NO) bond. This motion is strongly coupled to the saddle-type distortion of the porphyrin ligand. Coordination by the second axial ligand (imidazole) raises the calculated barrier for NO rotation to about 1 kcal/mol, which is further increased by displacements of imidazole from the ideal axial position. The potential energy surface for the dissociation of the weakly coordinated imidazole ligand is exceptionally flat, with variation of the Fe-N(Im) bond length between 2.1 and 2.5 A changing the energy by less than 1 kcal/mol. Experimental orientations of both axial ligands, as well as the Fe-N(Im) bond length, are therefore likely to be determined by the environment of the complex. In contrast to the total energy, calculated EPR g-tensors are sensitive to the orientation of the NO ligand and to the Fe-N(Im) bond length. Contrary to a common assumption, the g tensor component closest to the free-electron value does not coincide with the direction of the Fe-N(NO) bond. From comparison of the calculated and experimental g-tensor components for a range of structures, the rhombic ("type I") EPR signal is assigned to a static structure with NO oriented toward the meso-C atom of the prophyrin ring, and RFe-N(Im) approximately 2.1 A (calcd g1 = 1.95, g2 = 2.00, g3 = 2.04; exptl g1 = 1.96-1.98, g2 = 2.00, g3 = 2.06-2.08). The axial ("type II") EPR signal cannot correspond to any of the static structures studied presently. It is tentatively assigned to a partially dissociated six-coordinated complex (RFe-N(Im) > 2.5 A), with a freely rotating NO ligand (calcd g parallel = 2.00, g perpendicular = 2.03; exptl g parallel = 1.99-2.00, g perpendicular = 2.02-2.03).  相似文献   

19.
The results presented here show that the nature of the axial ligand can alter the distribution of electrons between the metal and the porphyrin in complexes where there is an oxygen atom replacing one of the meso protons. The complexes (1-MeIm)(2)Fe(III)(OEPO) and (2,6-xylylNC)(2)Fe(II)(OEPO(*)) (where OEPO is the trianionic octaethyloxophlorin ligand and OEPO(*) is the dianionic octaethyloxophlorin radical) were prepared by addition of an excess of the appropriate axial ligand to a slurry of [Fe(III)(OEPO)](2) in chloroform under anaerobic conditions. The magnetic moment of (2,6-xylylNC)(2)Fe(II)(OEPO(*)) is temperature invariant and consistent with a simple S = (1)/(2) ground state. This complex with an EPR resonance at g = 2.004 may be considered as a model for the free-radical like EPR signal seen when the meso-hydroxylated heme/heme oxygenase complex is treated with carbon monoxide. In contrast, the magnetic moment of (1-MeIm)(2)Fe(III)(OEPO) drops with temperature and indicates a spin-state change from an S = (5)/(2) or an admixed S = (3)/(2),(5)/(2) state at high temperatures (near room temperature) to an S = (1)/(2) state at temperatures below 100 K. X-ray diffraction studies show that each complex crystallizes in centrosymmetric form with the expected six-coordinate geometry. The structure of (1-MeIm)(2)Fe(III)(OEPO) has been determined at 90, 129, and 296 K and shows a gradual and selective lengthening of the Fe-N(axial bond). This behavior is consistent with population of a higher spin state at elevated temperatures.  相似文献   

20.
The reactions of the nitrogen Lewis bases (B) 1-methylimidazole (1-MeIm), pyridine (Py), and NH3 as gases with sublimed layers containing the 5-coordinate nitrito iron(III)-porphyrinato complexes Fe(Por)(eta1-ONO) (1) are described (Por = meso-tetraphenyl-porphyrinato or meso-tetra-p-tolyl-porphyrinato dianions). In situ FTIR and optical spectra are used to characterize the formation of the 6-coordinate nitro complexes formed by the reaction of 1 with B = 1-MeIm, Py, or NH3. These represent the first examples of 6-coordinate amino-nitro complexes with sterically unprotected iron-porphyrins. The interaction of ammonia with Fe(Por)(ONO) at 140 K initially led to the nitrito species Fe(Por)(NH3)(eta1-ONO), and this species isomerized to the nitro complexes Fe(Por)(NH3)(eta1-NO2) upon warming to 180 K. When the latter were warmed to room temperature under intense pumping, the initial nitrito complexes Fe(Por)(eta1-ONO) were restored. Assignments of vibrational frequencies for the coordinated nitro group in 6-coordinate iron-porphyrin complexes are given and confirmed using 15N-labeled nitrogen dioxide to identify characteristic infrared bands. For M(Por)(B)(NO2) complexes (M = Fe or Co), an inverse correlation between the net charge transfer from the axial ligand B to the nitro group and the value of Deltanu = nua(NO2) - nus(NO2) is proposed. These observations are discussed in the context of growing interest in potential physiological roles of nitrite ion reactions with ferro- and ferri-heme proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号