首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract— 8-methoxypsoralen monoadduct formation in calf thymus DNA irradiated with subbands of ultraviolet A light has been quantitated by HPLC analysis of the enzymatic hydrolysates of the DNA. Normalization of the yield of monoadducts for the variation in source output and the absorptivity of 8-MOP at each of the irradiating wavelengths showed that the 4',5'-furan monoadduct was the principal photoproduct and the efficiency of its formation was independent of irradiating wavelength. Synthetic polynucleotides irradiated with ultraviolet A light demonstrated a base composition and sequence dependence for 8-MOP photoreactivity: (poly(dAdT.dAdT) > poly(dA.dT) > poly(dGdC.dGdC) in both the B and Z forms > pofy(dT).  相似文献   

2.
Abstract— Yields and action spectra are reported for photochemistry. fluorescence. and total lumincscence at 405 nm due to UV excitation (240–300 nm) or dilutc (-0.1 mM ) solutions or guanosine 5–monophosphate (GMP) and the dinucleosides linking guanine with adenine (ApG and GpA). cytosine (CpG) and uracil (GpU) in neutral ethylene glycol-water (7:3) glasses at 140–165 K. Phosphorescence lifetimes were determined at 140 K. Less complete data are presented for GpC, UpG and dpGpT. Quantum yields for all three processes were usually found to increase as the excitation wavelength increases. Although intramolecular exciplex formation was not dominant under these conditions interactions were strong enough to frustrate attempts at interpretation of results within the Forster very weak coupling framework. There is evidence that the GMP photochemistry proceeds from the triplet state. Surprisingly, this photochemistry is not quenched in ApG, GpA, and dpGpT at 163 K although the adenine (A) and thymine (T) moieties are known to have lower triplet states. At 140 K the phosphorescence from ApG and GpA was entirely characteristic of A but both G and T components were observed from dpGpT.  相似文献   

3.
Abstract— A reversed-phase HPLC system has been developed which separates the common nucleo-bases from the 6-methylimidazo[4,5- b ]pyridin-5-one (6-MIP) produced on acid hydrolysis of a thymine-adenine photoadduct (TA*) that is formed between adjacent thymine and adenine bases in UV-irradiated polydeoxyribonucleotides. By measuring the relative amounts of adenine and 6-MIP in acid hydrolysates, this system has been used to investigate how polynucleotide conformation affects the yield of TA* in poly(dA-dT) irradiated at 254 nm. The photoreactivity of other pyrimidine-purine sequences has been examined with the deoxydinucleoside monophosphates d(TpI) and d(m5CpA) and with the alternating DNA copolymers poly(dA-dU), poly(dI-dC), poly(dG-dC) and poly(dA-dC).poly(dG-dT). Samples were irradiated at 254 nm in aqueous solution and in ice, and at wavelengths >290 nm with acetone as photosensitizer. A photoproduct resembling TA*, and giving 6-MIP on acid hydrolysis, was isolated from d(TpI) irradiated at 254 nm in solution or in ice; d(m5CpA) was comparatively unreactive. Acid hydrolysates of the irradiated DNA copolymers were screened by HPLC and by TLC and paper electrophoresis, for the presence of imidazo[4,5- b ]pyridin-5-one, 6-MIP, or other species attributable to specific photoproduct formation. By this criterion, however, none of the copolymers showed evidence of significant photoreactivity in either their single- or double-stranded conformational states. The formation of mixed pyrimidine-purine photoadducts in DNA is therefore probably restricted to T-A doublets.  相似文献   

4.
Reactions of cis-[Rh(2)(DTolF)(2)(NCCH(3))(6)](BF(4))(2) with the dinucleotides d(GpA) and d(ApG) proceed to form [Rh(2)(DTolF)(2){d(GpA)}] and [Rh(2)(DTolF)(2){d(ApG)}], respectively, with bridging purine bases spanning the Rh-Rh unit in the equatorial positions. Both dirhodium adducts exhibit head-to-head (HH) arrangement of the bases, as indicated by the presence of H8/H8 NOE cross-peaks in the 2D ROESY NMR spectra. The guanine bases bind to the dirhodium core at positions N7 and O6, a conclusion that is supported by the absence of N7 protonation at low pH values and the notable increase in the acidity of the guanine N1H sites (pK(a) approximately 7.4 in 4:1 CD(3)CN/D(2)O), inferred from the pH-dependence titrations of the guanine H8 proton resonances. In both dirhodium adducts, the adenine bases coordinate to the metal atoms through N6 and N7, which induces stabilization of the rare imino tautomer of the bases with a concomitant substantial decrease in the basicity of the N1H adenine sites (pK(a) approximately 7.0-7.1 in 4:1 CD(3)CN/D(2)O), as compared to the imino form of free adenosine. The presence of the adenine bases in the rare imino form is further corroborated by the observation of DQF-COSY H2/N1H and ROE N1H/N6H cross-peaks in the 2D NMR spectra of [Rh(2)(DTolF)(2){d(GpA)}] and [Rh(2)(DTolF)(2){d(ApG)}] in CD(3)CN at -38 degrees C. The 2D NMR spectroscopic data and the molecular modeling results suggest the presence of right-handed variants, HH1R, in solution for both adducts (HH1R refers to the relative base canting and the direction of propagation of the phosphodiester backbone with respect to the 5' base). Complete characterization of [Rh(2)(DTolF)(2){d(GpA)}] and [Rh(2)(DTolF)(2){d(ApG)}] by 2D NMR spectroscopy and molecular modeling supports anti-orientation of the sugar residues for both adducts about the glycosyl bonds as well as N- and S-type conformations for the 5'- and 3'-deoxyribose residues, respectively.  相似文献   

5.
The ionization of the DNA single and double helices (dA)20, (dT)20, (dAdT)10(dAdT)10 and (dA)20(dT)20, induced by nanosecond pulses at 266 nm, is studied by time-resolved absorption spectroscopy. The variation of the hydrated electron concentration with the absorbed laser intensity shows that, in addition to two-photon ionization, one-photon ionization takes place for (dAdT)10(dAdT)10, (dA)20(dT)20 and (dA)20 but not for (dT)20. The spectra of all adenine-containing oligomers at the microsecond time-scale correspond to the adenine deprotonated radical formed in concentrations comparable to that of the hydrated electron. The quantum yield for one-photon ionization of the oligomers (ca. 10(-3)) is higher by at least 1 order of magnitude than that of dAMP, showing clearly that organization of the bases in single and double helices leads to an important lowering of the ionization potential. The propensity of (dAdT)10(dAdT)10, containing alternating adenine-thymine sequences, to undergo one-photon ionization is lower than that of (dA)20(dT)20 and (dA)20, containing adenine runs. Pairing of the (dA)20 with the complementary strand leads to a decrease of quantum yield for one photon ionization by about a factor of 2.  相似文献   

6.
A dimeric neomycin-neomycin conjugate 3 with a flexible linker, 2,2'-(ethylenedioxy)bis(ethylamine), has been synthesized and characterized. Dimer 3 can selectively bind to AT-rich DNA duplexes with high affinity. Biophysical studies have been performed between 3 and different nucleic acids with varying base composition and conformation by using ITC (isothermal calorimetry), CD (circular dichroism), FID (fluorescent intercalator displacement), and UV (ultraviolet) thermal denaturation experiments. A few conclusions can be drawn from this study: (1) FID assay with 3 and polynucleotides demonstrates the preference of 3 toward AT-rich sequences over GC-rich sequences. (2) FID assay and UV thermal denaturation experiments show that 3 has a higher affinity for the poly(dA)·poly(dT) DNA duplex than for the poly(dA)·2poly(dT) DNA triplex. Contrary to neomycin, 3 destabilizes poly(dA)·2poly(dT) triplex but stabilizes poly(dA)·poly(dT) duplex, suggesting the major groove as the binding site. (3) UV thermal denaturation studies and ITC experiments show that 3 stabilizes continuous AT-tract DNA better than DNA duplexes with alternating AT bases. (4) CD and FID titration studies show a DNA binding site size of 10-12 base pairs/drug, depending upon the structure/sequence of the duplex for AT-rich DNA duplexes. (5) FID and ITC titration between 3 and an intramolecular DNA duplex [d(5'-A(12)-x-T(12)-3'), x = hexaethylene glycol linker] results in a binding stoichiometry of 1:1 with a binding constant ~10(8) M(-1) at 100 mM KCl. (6) FID assay using 3 and 512 hairpin DNA sequences that vary in their AT base content and placement also show a higher binding selectivity of 3 toward continuous AT-rich than toward DNA duplexes with alternate AT base pairs. (7) Salt-dependent studies indicate the formation of three ion pairs during binding of the DNA duplex d[5'-A(12)-x-T(12)-3'] and 3. (8) ITC-derived binding constants between 3 and DNA duplexes have the following order: AT continuous, d[5'-G(3)A(5)T(5)C(3)-3'] > AT alternate, d[5'-G(3)(AT)(5)C(3)-3'] > GC-rich d[5'-A(3)G(5)C(5)T(3)-3']. (9) 3 binds to the AT-tract-containing DNA duplex (B* DNA, d[5'-G(3)A(5)T(5)C(3)-3']) with 1 order of magnitude higher affinity than to a DNA duplex with alternating AT base pairs (B DNA, d[5'-G(3)(AT)(5)C(3)-3']) and with almost 3 orders of magnitude higher affinity than a GC-rich DNA (A-form, d[5'-A(3)G(5)C(5)T(3)-3']).  相似文献   

7.
Release of bases form calf thymus DNA and three polynucleotides, induced by 20 ns excitation at 193 nm in aqueous solution at pH 7, was detected by HPLC. The quantum yields of formation of free bases (phi B) from double-stranded DNA (0.4 mM) are independent of intensity, indicating a one-quantum mechanism of N-glycosidic bond cleavage. The phi B values increase in the order guanine, thymine, adenine, cytosine, the latter being phi C approximately 7 x 10(-4) for double-stranded DNA under Ar and O2. The larger phi B values in N2O-saturated solution, e.g., phi C = 1.2 x 10(-3), are ascribed to additional base release via OH-adduct radicals. The phi B values of homopolynucleotides increase in the order poly(G), poly(A) and poly(C), e.g. phi C = 7 x 10(-3) under Ar, as do the efficiencies for base release per radical cation (eta B). A comparison of the eta B values with the efficiencies of single-strand breakage for poly(C), poly(A) and DNA shows a similar trend; both are markedly larger for pyrimidines than for purines. Pathways to undamaged bases, initiated from base radical cations, are proposed.  相似文献   

8.
Abstract— The absolute action spectrum has been determined for photoenzymatic splitting of cyclobutadipyrimidines ("pyrimidine dimers") from natural DNA, and from the synthetic polydeoxyribonucleotides poly(dA)·poly(dT) (forming only cyclobutadithymine) and poly(dG)·poly(dC) (forming only cyclobutadicytosine). These action spectra differ strikingly from each other, even when using the same enzyme preparations. On the other hand, the action spectrum for splitting cyclobutadithymine in natural DNA containing "dimers" of only this one type closely resembles the action spectrum for splitting the total mixture of "dimer" types in natural DNA, and is entirely different from the spectrum for splitting of the same photoproduct from poly(dA)·poly(dT). These results mean that the action spectrum is not simply the absorption spectrum of a chromophore carried by the photoreactivating enzyme, nor is it solely determined by the nature of the substrate photoproduct. It is at least partly determined by the over-all polynueleotide structure (viz. exact helical dimensions, pattern of neighboring bases to the "dimers," or both), affecting a ground state interaction between the enzyme and substrate in the enzyme-substrate complex.  相似文献   

9.
We characterize the room-temperature adsorption of single-stranded DNA homo-oligonucleotides from solution onto polycrystalline Au films, including competitive adsorption between all possible pairs of unmodified oligomers. Fourier transform infrared (FTIR) and X-ray photoelectron (XPS) spectroscopy analysis of the resulting films shows that oligonucleotides adsorb with a strongly base-dependent affinity, adenine (A) > cytosine (C) >/= guanine (G) > thymine (T). In competitive adsorption experiments on Au, oligo(dA) strongly dominates over the other oligonucleotides. The relative adsorption affinity of oligo(dA) is so great that it competes effectively against adsorption of thiolated oligomers and even causes hybridized oligo(dA).oligo(dT) duplexes to denature in the presence of Au.  相似文献   

10.
The spectral properties of meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) bound to poly(dA).poly(dT) and poly[d(A-T)(2)] in the presence and in the absence of 4',6-diamidino-2-phenylindole (DAPI) have been studied. DAPI fits deeply into the minor groove of both poly(dA).poly(dT) and poly[d(A-T)(2)], and TMPyP is also situated at the minor groove. The nature of the absorption, circular dichroism (CD), and flow linear dichroism (LD) spectra of the TMPyP-poly(dA).poly(dT) and -poly[d(A-T)(2)] complexes in the Soret band is essentially unaffected whether the minor groove is blocked by DAPI or not, although small variations been noticed in the presence of DAPI. Furthermore, a close analysis of the reduced LD spectrum in the Soret band results in angles of approximately 80 degrees and 55 degrees between transition moments of the TMPyP and DNA helix axes in the absence of DAPI. All these observations indicate that the side of TMPyP whose structure resembles that of classical minor groove binding drugs does not fit deeply into the minor groove. This suggests that TMPyP binds across the minor groove: two positively charged pyridiniumyl rings interact electrostatically with negatively charged phosphate groups of DNA. When DAPI and TMPyP are simultaneously bound to poly(dA).poly(dT) or poly[d(A-T)(2)], the fluorescence intensity of DAPI decreases as TMPyP concentration increases, indicating that the excited energy of DAPI is transferred to TMPyP.  相似文献   

11.
Double-helical polynucleotide conformations, poly(dA)·poly(dT), poly(d(A-T))·poly(d(T-A))·poly(dG)·poly(dC), and poly(d(G-C))·poly(d(C-G)) are analyzed by the atom–atom potential method. The energy optimization is carried out in the space of eight independent geometric parameters using analytical procedures for the constraints, taking into account the flexibility of the β-D -deoxyribose rings. At the first stage, the full screening of atomic partial charges was assumed. The structures of the calculated B and the A forms of DNA are characterized by low energy and absence of short contacts; the dihedral angles are near the average values in the monomers. With the typical energy difference of 3–5 kcal/mol nucleotide pairs in all cases, the B form is more preferable as compared to the A form. At the final step the effect of the Coulomb term is evaluated for poly(dA)·poly(dT) using various values of the effective dielectric constant (? = 28, 24, 20, 18, 14, 12, 10, 8, 6, 4, and 1). If ? ?24, the energy optimization leads A to B. We discuss the stereochemical details of the intermediate conformations on the A–B path and hypothesize the nature of stability of the A and the B forms and the mechanism of the A–B transition.  相似文献   

12.
The C4'-oxidized abasic site (C4-AP) is produced in DNA as a result of oxidative stress. A recent report suggests that this lesion forms interstrand cross-links. Using duplexes in which C4-AP is produced from a synthetic precursor, we show that the lesion produces interstrand cross-links in which both strands are in tact and cross-links in which the C4-AP containing strand is cleaved. The yields of these products are dependent upon the surrounding nucleotide sequence. When C4-AP is opposed by dA, cross-link formation occurs exclusively with an adjacent dA on the 5'-side. Moreover, formation of the lower molecular weight cross-link is promoted by an opposing adenine. When the opposing dA is replaced by dT, the activity of the adenine can be rescued by adding the free base. This is a rare example in which DNA promotes its own modification, an observation that is all the more important because of the biological significance of the product produced.  相似文献   

13.
Halogen bonding (R-X···Y) is a qualitative analogue of hydrogen bonding that may prove useful in the rational design of artificial proteins and nucleotides. We explore halogen-bonded DNA base pairs containing modified guanine, cytosine, adenine and thymine nucleosides. The structures and stabilities of the halogenated systems are compared to the normal hydrogen bonded base pairs. In most cases, energetically stable, coplanar structures are identified. In the most favorable cases, halogenated base pair stabilities are within 2 kcal mol(-1) of the hydrogen bonded analogues. Among the halogens X = Cl, Br, and I, bromine is best suited for inclusion in these biological systems because it possesses the best combination of polarizability and steric suitability. We find that the most stable structures result from a single substitution of a hydrogen bond for a halogen bond in dA:dT and dG:dC base pairs, which allows 1 or 2 hydrogen bonds, respectively, to complement the halogen bond.  相似文献   

14.
The first and second substitution reactions between activated (hydrolyzed) cisplatin, Pt(NH3)2(H2O)2(2+), and purine bases guanine and adenine are explored using the B3LYP hybrid functional, IEF-PCM solvation models, and large basis sets. The computed free energy barrier for the first substitution is 19.5 kcal/mol for guanine (exptl value = 18.3 kcal/mol) and 24.0 kcal/mol for adenine. The observed predominance toward guanine in the first substitution is explained in terms of significantly larger stabilization energy for the initially formed complex, compared with adenine, in combination with favored kinetics, and represents a revised view of the proposed mechanism for cisplatin binding to DNA. For the second substitution, the computed barrier for Pt(NH3)2G2(2+) head-to-head formation is 22.5 kcal/mol, in very good agreement with experimental data for adduct closure (23.4 kcal/mol). Again, a higher stability in complexation with G over A is ascribed as the main contributing factor favoring G over A substitution. The calculations provide a first explanation for the predominance of 1,2-d(GpG) over 1,2-d(ApG) intrastrand didentate adducts, and the origin of the 5'-3' direction specificity of the 1,2-d(ApG) adducts.  相似文献   

15.
The purification of DNA polymerases (RNA-directed DNA polymerases and DNA-directed DNA polymerases) on poly(U)-Sepharose 4B from a breast tumour cell line (T-47D) is reported. The elution of these enzymes was followed in each fraction by activity measurements with the four primer-templates poly(rA)-oligo(dT)12-18, poly(dA) oligo(dT)12-18, poly(rC)-oligo(dG)12-18 and poly(rCm)-oligo (dG)12-18. The control of the polymerase purification by chromatography was performed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis of the pooled active enzymatic fractions.  相似文献   

16.
The fluorescence of the DNA double-stranded oligomer (dA)20 x (dT)20 is studied at room temperature by fluorescence up-conversion at times shorter than 10 ps. The profile of the up-conversion spectra is similar to that of the steady-state fluorescence spectrum, showing that the majority of the photons are emitted within the probed time scale. At all the probed wavelengths, the fluorescence decays are slower than those of the monomeric chromophores dAMP and TMP. The fluorescence anisotropy decays show strong wavelength dependence. These data allow us to conclude that energy transfer takes place in this double helix and that this process involves exciton states. The spectral and dynamical properties of the oligomer are compared to those of the polymer poly(dA) x poly(dT), composed of about 2000 base pairs, reported previously. The oligomer absorption spectrum is characterized by a smaller hypsochromic shift and weaker hypochromism compared to the polymer. Moreover, the fluorescence decays of (dA)20 x (dT)20 are twice as fast as those of poly(dA) x poly(dT), and its fluorescence anisotropy decays more slowly. These differences are the fingerprints of a larger delocalization of the excited states induced by an increase in the size of the duplex.  相似文献   

17.
We synthesized two water-soluble porphyrins appending platinum(II) complexes [alpha,beta-(4a) and alpha,alpha-(4b) 5,15-bis(2-trans-[PtCl(NH3)2]N-2-aminoethylaminocarbonylphenyl) 2,3,7,8,12,13,17,18-octamethylporphyrin] and studied their reactions with a variety of nucleic acids [disodium adenosine-5'-monophosphate (AMP), disodium guanosine-5'-monophosphate (GMP), disodium thymidine-5'-monophosphate (TMP), disodium cytidine-5'-monophosphate (CMP), synthetic polymer poly(dG)-poly(dC), poly(dA)-poly(dT)] by 1H-NMR, UV-vis and FAB-MS spectroscopies. Based on the denaturation experiments of synthetic nucleic acid polymers, we conclude that the presence of the porphyrins (5.6 microM) does not cause significant changes in the melting temperature of poly(dA)-poly(dT) (28 microM) (deltaT=1 degrees C) and shows reannealing. On the other hand, gradual melting of poly(dG)-poly(dC) (28 microM) occurs at a low temperature (deltaT= -27 degrees C) in the presence of the porphyrins (5.6 microM), and the solutions do not show reannealing phenomena. The results of UV-vis and 1H-NMR experiments revealed that the porphyrins bind to guanine bases and that the porphyrins bind to GMP more strongly than to the other nucleotides. The binding modes between the porphyrins and synthetic nucleic acids are affected more by the coordination of the nucleobase [poly(dG)-poly(dC)] to the Pt(II) in the porphyrins than by Coulomb and hydrophobic interactions.  相似文献   

18.
Abstract— The photoreactivity of dictamnine, a furoquinoline alkaloid, towards different synthetic DNAs has been studied. The ratio of the photobinding of [3H]-dictamnine to poly(dA-dT) poly(dA-dT): poly(dG-dC) poly(dG-dC): poly(dA-dU) poly(dA-dU): poly(dA) poly(dT), in relation to that of calf thymus DNA, is 18:1:0.5:0.3. Prior treatment of calf thymus DNA with dictamnine in light inhibits the subsequent incorporation of 8-methoxypsoralen (8-MOP). These results suggest that the sites in DNA for the photobinding of dictamnine are probably identical with those for monoad-ducts of 8-MOP. Furthermore, the template activity of photomodified DNA in the RNA polymerase reaction is considerably inhibited for poly(dA-dT)poly(dA-dT), to a lesser extent for calf thymus DNA, but almost not affected for the linear copolymer, poly(dA)-poly(dT).  相似文献   

19.
The action cross sections for the formation of the cyclobutane dimer and the (6-4) photoproduct of thymine as well as the absorption cross sections of thymine were determined in the wavelength region between 150 and 290 nm. Thymine films sublimed on glass plates were irradiated by monochromatic photons in a vacuum; the induced photoproducts were quantitatively analyzed by high-performance liquid chromatography (HPLC). Under our conditions, two major peaks appeared on the HPLC chromatograms of irradiated samples. The two peaks were identified as being the cis-syn cyclobutane dimer and the (6-4) photoproduct, based on their HPLC retention times, absorption spectra in the effluent, and photochemical reactivity. The fractions of the two photoproducts increased linearly with the fluence at low fluences over the entire wavelength range. Their action cross sections were determined by the slopes of the linear fluence response curve at 10 nm intervals between 150 and 290 nm. The two action spectra showed a similar wavelength dependence and had a maximum at 270 nm as well as two minor peaks at 180 and 220 nm, at which wavelengths the peaks of the absorption spectrum of thymine sublimed on a CaF2 crystal plate appeared. The quantum yields had relatively constant values of around 0.008 for the dimer and 0.013 for the (6-4) photoproduct above 200 nm, decreasing to 0.003 and 0.006, respectively, at 150 nm as the wavelength became shorter.  相似文献   

20.
The reactions of the anticancer complex trans-[PtCl2{(E)-HN=C(OMe)Me}2] (trans-EE) with a series of ribo and deoxyribodinucleotides have been studied by HPLC and 2D [1H, 15N] HMQC NMR spectroscopy and compared with those of the inactive trans isomer of cisplatin, trans-[PtCl2(NH3)2] (trans-DDP). Reactions of trans-EE with r(ApG) and d(ApG) take place through solvolysis of the starting substrate and subsequent formation of trans G-N7/monochloro and G-N7/monoaqua adducts. Slowly, the monofunctional adducts evolve to a bifunctional adduct forming an unprecedented and unexpected A-N3/G-N7 platinum cross-link spanning two trans positions. For stereochemical reasons, trans platinum complexes cannot form N7/N7 cross-links between adjacent purines in di- or polynucleotides. For the reverse sequence r(GpA), no chelate structure was formed even after a two-week reaction. The reaction of trans-DDP with r(ApG) produces many more products than the analogous reaction with trans-EE. One of these products was identified as the A-N3/G-N7 trans-chelate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号