首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Quasi-zero-stiffness(QZS) vibration isolators have been widely studied,because they show excellent high static and low dynamic stiffnesses and can effectively solve low-frequency and ultralow-frequency vibration. However, traditional QZS(T-QZS)vibration isolators usually adopt linear damping, owing to which achieving good isolation performance at both low and high frequencies is difficult. T-QZS isolators exhibit hardening stiffness characteristics, and their vibration isolation performance is e...  相似文献   

3.
Flow of shear-thinning fluids in a concentric annulus   总被引:1,自引:0,他引:1  
Distributions of mean axial velocity, axial and tangential turbulence intensities together with friction factor versus Reynolds number (f-Re) data are presented for three non-Newtonian liquids in fully developed laminar, transitional and turbulent flow in an annular geometry in the absence of centrebody rotation. Each of the non-Newtonian fluids was shear thinning and to some extent elastic and one was also thixotropic in character. For comparison purposes, measurements are also reported for a Newtonian fluid.In the case of the Newtonian fluid, a mixture of glucose syrup and water, the f-Re data in both laminar and turbulent flow follow the appropriate relationships for the annular geometry, with a clear demarcation at transition which is confirmed independently by a measured increase in the centre-channel axial turbulence intensities. The measured velocity profiles for laminar flow are in good agreement with those predicted theoretically, whilst the turbulent profiles obey the log-law relationship over much of the mid-channel region and tend to the u +=y + relationship in the immediate vicinity of both walls.For the first non-Newtonian fluid, an aqueous solution of sodium carboxymethylcellulose (CMC), good agreement with theoretical predictions for a power-law fluid was observed in the f-Re data in the laminar regime with evidence of drag reduction in turbulent flow. Velocity profiles, determined in two planes, indicate minor circumferential asymmetry in laminar flow. Law-of-the-wall plots for fully turbulent flow indicate an upward shift in the data in the log-law region of the annulus consistent with the drag-reduction behaviour, as also observed in pipe-flow experiments for this fluid (Escudier et al. 1992). In the near-surface regions of both the outer and inner tubes the data again tend towards the u +=y + relationship.Anomalous behaviour was observed in the f-Re curves for the second non-Newtonian fluid, 0.125% and 0.2% aqueous solutions of Xanthan gum, with data for both concentrations falling significantly below the appropriate f-Re relationship for a power-law fluid. The anomalies are attributed to the elastic character of Xanthan gum. In the near-surface region of the outer tube the velocity-profile data again tend towards the u +=y + relationship but it proved impossible to obtain data in the near vicinity of the inner wall due to slight turbidity of the fluid.The third non-Newtonian fluid, a Laponite/CMC blend, again exhibits anomalous f-Re behaviour, attributed to the thixotropic nature of this fluid. Velocity profiles determined in two planes again indicate some circumferential asymmetry in the laminar regime. Law-of-the-wall plots for the transitional and turbulent profiles tend towards the u +=y + relationship in both near-wall regions, again with an upward shift in the core of the annulus, consistent with drag reduction.In general terms, the experimental results are consistent with previous work for non-Newtonian fluid flow in circular pipes and with limited data for an annular geometry (Nouri et al. 1993), with regard to drag reduction, modified turbulence structure and scale effects.List of Symbols D i centrebody diameter (m) - D o outer pipe diameter (m) - (D o -D i ) hydraulic diameter (m) - f friction factor (2 · A /U2) - n power-law exponent (-) - p fluid static pressure (Pa) - Q volumetric flow rate (m3/s) - r radial distance from pipe centreline (m) - R i centrebody radius (m) - R o outer pipe radius (m) - R n refractive index (-) - Re Reynolds number U(D o -D i )/ s - s geometric scaling factor (-) - u mean axial velocity (m/s) - u rms fluctuation in axial velocity (m/s) - u c1 rms fluctuation in centreline axial velocity (m/s) - u non-dimensional value of u (u/u ) - u friction velocity (m/s) - w rms fluctuation in tangential velocity (m/s) - x axial distance along pipe (m) - y distance from pipe or centrebody wall (m) - y + non-dimensional value of y (u y/v s ) - p/L pressure drop per unit length (N/m2/m) - shear rate (s-1) - radius ratio R i /R o - C constant in Cross model (s) - CA constant in Carreau model (s) - HB constant in Herschel-Bulkley model (s) - n constant in power-law model (s) - S constant in Sisko model (s) - dynamic viscosity (Pa · s) - ref reference viscosity (1 Pa · s) - s viscosity at wall at prevailing surface shear stress (Pa · s) - 0 zero shear-rate viscosity (Pa · s) - infinite shear-rate viscosity (Pa · s) - v kinematic viscosity (/) (m2/s) - v s kinematic viscosity at wall (m2/s) - non-dimensional radial location (R o -r)/(R o -R i ) - fluid density (kg/m3) - shear stress (Pa) - A weighted average wall shear stress (Pa) - i shear stress on centrebody (Pa) - o shear stress on outer wall (Pa) - s surface shear stress (Pa) - ref reference shear stress (1 Pa) - y fluid yield stress (Pa) - * geometry function of Jones and Leung (1981) The work reported here represents part of programme of research which has received financial support from SERC (GR/F 87813), BP Exploration Company Ltd, Shell Research BV and AEA Petroleum Services. This support is gratefully acknowledged. Frequent meetings with Professor J. H. Whitelaw, Imperial College of Science, Technology and Medicine, Dr. C. F. Lockyear and Dr. D. Ryan, BP Research, Ms. B. Kampman, Shell Research BV, and Dr. W. J. Worraker, AEA Technology, were of considerable benefit to the research.  相似文献   

4.
Turbulent characteristics of shear-thinning fluids in recirculating flows   总被引:1,自引:0,他引:1  
 A miniaturised fibre optic Laser-Doppler anemometer was used to carry out a detailed hydrodynamic investigation of the flow downstream of a sudden expansion with 0.1–0.2% by weight shear-thinning aqueous solutions of xanthan gum. Upstream of the sudden expansion the pipe flow was fully-developed and the xanthan gum solutions exhibited drag reduction with corresponding lower radial and tangential normal Reynolds stresses, but higher axial Reynolds stress near the wall and a flatter axial mean velocity profile in comparison with Newtonian flow. The recirculation bubble length was reduced by more than 20% relative to the high Reynolds number Newtonian flow, and this was attributed to the occurrence further upstream of high turbulence for the non-Newtonian solutions, because of advection of turbulence and earlier high turbulence production in the shear layer. Comparisons with the measurements of Escudier and Smith (1999) with similar fluids emphasized the dominating role of inlet turbulence. The present downstream turbulence field was less anisotropic, and had lower maximum axial Reynolds stresses (by 16%) but higher radial turbulence (20%) than theirs. They reported considerably longer recirculating bubble lengths than we do for similar non-Newtonian fluids and Reynolds numbers. Received: 23 February 1999/Accepted: 28 April 1999  相似文献   

5.
The motion of a single bubble rising freely in quiescent non-Newtonian viscous fluids was investigated experimentally and computationally. The non-Newtonian effects in the flow of viscous inelastic fluids are modeled by the Carreau rheological model. An improved level set approach for computing the incompressible two-phase flow with deformable free interface is used. The control volume formulation with the SIMPLEC algorithm incorporated is used to solve the governing equations on a staggered Eulerian grid. The simulation results demonstrate that the algorithm is robust for shear-thinning liquids with large density (ρ1/ρg up to 103) and high viscosity (η1/ηg up to 104). The comparison of the experimental measurements of terminal bubble shape and velocity with the computational results is satisfactory. It is shown that the local change in viscosity around a bubble greatly depends on the bubble shape and the zero-shear viscosity of non-Newtonian shear-thinning liquids. The shear-rate distribution and velocity fields are used to elucidate the formation of a region of large viscosity at the rear of a bubble as a result of the rather stagnant flow behind the bubble. The numerical results provide the basis for further investigations, such as the numerical simulation of viscoelastic fluids.  相似文献   

6.
The formation of a thin film by (i) the slow penetration of a gas bubble into a liquid filled tube, (ii) the withdrawal of a planar substrate from a liquid filled gap, is investigated theoretically for the cases of both Newtonian and shear-thinning liquids; the latter conforming to either a power–law or Ellis model. Formulated as a boundary value problem underpinned by lubrication theory, the analysis gives rise to a system of ordinary differential equations which are solved numerically subject to appropriate boundary conditions. For Newtonian liquids comparison of the predicted residual film thickness for a wide range of capillary number, Ca  (10−4, 10), is made with others obtained using existing expressions, including the classical one of Bretherton, in the region of parameter space over which they apply. In the case of (i), prediction of the behaviour of the residual fluid fraction and gap-to-film thickness ratio, for a Newtonian liquid and one that is shear-thinning and modelled via a power–law, is found to be in particularly good agreement with experimental data for Ca < 0.2. For (ii), both shear-thinning models are utilized and contour plots of residual film thickness generated as a function of Ca and the defining parameters characteristic of each model.  相似文献   

7.
8.
Relation between viscoelasticity and shear-thinning behaviour in liquids   总被引:1,自引:0,他引:1  
Summary The shear-thinning behaviour of a liquid is represented in terms of a relaxation time, defined by the ratio 0/G0 of initial viscous and elastic constants. The relationship provides a very simple basis for the evaluation of andG 0 from viscosity/shear data. Results are compared with relaxation times and moduli from primary normal-stress measurement, from stress relaxation and from direct measurement of recoverable shear strain. Good agreement is found but there is experimental evidence the recoverable shear strain e is related to normal stressN 1 and shear stress by e = N1/3, which does not agree with the theoretical prediction of eitherWeissenberg orLodge.
Zusammenfassung Das Scherentzähungsverhalten einer Flüssigkeit wird mittels einer Relaxationszeit beschrieben, die durch das Verhältnis der Anfangswerte von Viskosität und Elastizitätsmodul 0/G0 definiert ist. Diese Beziehung eröffnet eine einfache Methode zur Bestimmung von undG 0 aus Scherviskositätsmessungen. Die damit erhaltenen Ergebnisse werden mit Relaxationszeiten und Moduln verglichen, die durch Messung der ersten Normalspannungsdifferenz, der Spannungsrelaxation und der Scherdehnungsrückstellung (recoverable shear strain) gewonnen worden sind. Es wird eine gute Übereinstimmung gefunden, zugleich aber wird der experimentelle Nachweis geführt, daß die Scherdehnungsrückstellung e mit der ersten NormalspannungsdifferenzN 1 und der Schubspannung durch die Beziehung e = N1/3 verknüpft ist, was sowohl zu der theoretischen Voraussage vonWeissenberg als auch zu derjenigen vonLodge im Widerspruch steht.


With 10 figures and 1 table  相似文献   

9.
The interaction of two bubbles rising in shear-thinning inelastic fluids was studied. The experimental results were complemented by numerical simulations conducted with the arbitrary Lagrangian–Eulerian technique. Different initial alignments of the bubble pair were considered. Similarities and differences with the Newtonian fluids were found. The most noticeable difference is the so-called drafting–kissing–tumbling (DKT) process: for the case of bubbles rising in thinning fluids, the tumbling phase does not occur and the pair tends to form a stable doublet. The DKT process is also influenced by the amount of inertia and deformability of the individual bubbles and the initial angle between them. The experimental and numerical results suggest that the thinning wake formed behind the bubbles plays an important role in the speed of the pair and the formation of clusters in thinning fluids.  相似文献   

10.
The drag coefficient for bubbles with mobile or immobile interface rising in shear-thinning elastic fluids described by an Ellis or a Carreau model is discussed. Approximate solutions based on linearization of the equations of motion are presented for the highly elastic region of flow. These solutions are in reasonably good agreement with the theoretical predictions based on variational principles and with published experimental data. C D Drag coefficient - E * Differential operator [E * 2 = 2/2 + (sin/ 2)/(1/sin /)] - El Ellis number - F D Drag force - K Consistency index in the power-law model for non-Newtonian fluid - n Flow behaviour index in the Carreau and power-law models - P Dimensionless pressure [=(p – p 0)/0 (U /R)] - p Pressure - R Bubble radius - Re 0 Reynolds number [= 2R U /0] - Re Reynolds number defined for the power-law fluid [= (2R) n U 2–n /K] - r Spherical coordinate - t Time - U Terminal velocity of a bubble - u Velocity - Wi Weissenberg number - Ellis model parameter - Rate of deformation - Apparent viscosity - 0 Zero shear rate viscosity - Infinite shear rate viscosity - Spherical coordinate - Parameter in the Carreau model - * Dimensionless time [=/(U /R)] - Dimensionless length [=r/R] - Second invariant of rate of deformation tensors - * Dimensionless second invariant of rate of deformation tensors [=/(U /R)2] - Second invariant of stress tensors - * Dimensionless second invariant of second invariant of stress tensor [= / 0 2 (U /R)2] - Fluid density - Shear stress - * Dimensionless shear stress [=/ 0 (U /R)] - 1/2 Ellis model parameter - 1 2/* Dimensionless Ellis model parameter [= 1/2/ 0(U /R)] - Stream function - * Dimensionless stream function [=/U R 2]  相似文献   

11.
The propagation of elliptically polarised inhomogeneous plane waves in a linearly viscous fluid is considered. The angular frequency and the slowness vector are both assumed to be complex. Use is made throughout of Gibbs bivectors (complex vectors). It is seen that there are two types of solutions—the zero pressure solution, for which the increment in pressure due to the propagation of the wave is zero, and a universal solution which is independent of the viscosity.Since the waves are attenuated in time, the usual mean energy flux vector is not a suitable way of measuring energy flux. A new energy flux vector, appropriate to these waves is defined, and results relating it with energy dissipation and energy density are obtained. These results are related to a result derived directly from the balance of energy equation.  相似文献   

12.
The complete text of a paper at the International Conference on Applied Mechanics (Peking, August 21–25, 1989), with a brief content published in the conference proceedings.  相似文献   

13.
14.
As part of a long range study of vortex rings, their dynamics, interactions with boundaries and with each other, we present the results of experiments on thin core rings generated by a piston gun in water. We characterize the dynamics of these rings by means of the traditional equations for such rings in an inviscid fluid suitably modifying them to be applicable to a viscous fluid. We develop expressions for the radius, core size, circulation, and bubble dimensions of these rings.  相似文献   

15.
A detailed experimental study on the flow characteristics of various vortex shedding regimes was carried out for the flow of non-Newtonian fluids around a cylinder. The fluids were aqueous solutions of carboxymethyl cellulose (CMC) and tylose at weight concentrations ranging from 0.1 to 0.6%, which had varying degrees of shear-thinning and elasticity. Two cylinders of 10 and 20 mm diameter were used in the experiments, defining an aspect ratio of 12 and 6 and producing blockages of 5 and 10%, respectively. The Reynolds number (Re) ranged from 50 to 9×103.Shear-thinning gave rise to a decrease of the cylinder boundary-layer thickness and to a reduction of the diffusion length (ld), which raised the Strouhal number, St. In the laminar shedding regime, a modified Strouhal number was successful at overlapping the shedding frequency variation with the Reynolds number for the various solutions. In contrast, fluid elasticity was found to increase the formation length (lf), and this contributed to a decrease of the Strouhal number. The overall effect of shear-thinning and elasticity was an increase in the Strouhal number.The increase in polymer concentration and the corresponding increase in fluid elasticity were responsible for the reduction of the critical Reynolds number marking the sudden decrease of the formation length, Relf. In the shear layer transition regime, the formation length and Strouhal number data collapsed onto single curves as function of a Reynolds number difference, which confirmed Coelho and Pinho (J. Non-Newtonian Fluid Mech. (2003), accepted for publication) finding that an important effect of fluid rheology was in changing the demarcations of the various flow regimes.  相似文献   

16.
The application of an external field (magnetic or electric) to suspensions of particles in a carrier liquid often causes a dramatic increase in the flow resistance. The transient stress response of these systems during the start-up of shear flow was studied as a function of the shear rate, using a system of carbonyl iron particles dispersed in paraffinic spindle oil under magnetic flux densities up to 0.57 T. It was found that initially the stress increased in proportion to the applied strain, reaching a plateau value at a characteristic strain of 0.2. Similar strain dependence of the transient stress behaviour was observed for shear rates spanning the range 0.01 s–1 to 10 s–1, suggesting that strain-governed deformation and rupture of the particle aggregates in the fluid was the main contribution to the response. In addition, the steady state flow curves of these fluids were obtained over the shear rate range 0.1 to 100 s–1.  相似文献   

17.
Summary This paper analyzes some basic viscous flows of micropolar fluids. The problems ofCouette andPoiseuille flows between two parallel plates and a rotating fluid with a free surface, are solved using the theory of micropolar fluids. The results are presented graphically and compared with the classical ones, and the differences are discussed.  相似文献   

18.
N. H. Scott 《Wave Motion》1995,22(4):335-347
The propagation of inhomogeneous plane waves in a compressible viscous fluid is considered. The frequency and the slowness vector are both allowed to be complex. There are seen to be two types of solutions: (a) two transverse waves, which involve no density or pressure fluctuations, (b) a longitudinal wave, which involves no fluctuations in vorticity. For each type, a propagation condition is obtained giving the (complex) squared length of the slowness vector as a function of frequency. Each depends also on the viscosities. It is seen how to recover the incompressible case as the limit in which the inviscid acoustic wave speed tends to infinity. Each wave is shown to be linearly stable for real frequencies. These waves are attenuated in space and time but nevertheless it is possible to define constant weighted mean values (over a cycle of the propagating part of the wave) of the energy density, energy flux and dissipation. The energy-dissipation equation and the propagation conditions are used to derive relationships between these constant weighted means, some of which are generalizations to compressible fluids of previously known results for incompressible fluids. Explicit expressions in terms of frequency are given for the weighted means.  相似文献   

19.
Summary Previous work on the creeping flow of viscoelastic fluids past a sphere is reviewed. Theoretical analyses available in the literature were obtained for weakly elastic fluids and therefore they predict only a small influence of fluid elasticity on the drag. In this paper, an approximate theoretical analysis is given for the creeping flow past a rigid sphere in an unbounded medium. The analysis uses a variational principle to solve the equations of motion and continuity in conjunction with the Carreau constitutive equation. The theoretical results are presented in terms of a correction factor to the Newtonian drag coefficient. The correction factor is a function of the power law flow behaviour indexn, the ratio of limiting viscosities ( 0)/0 and a dimensionless time which reflects the elastic nature of the fluids. The results are presented in graphical form covering a realistic range of these dimensionless groups.In order to verify the theoretical predictions, the drag coefficient of a number of spheres was measured in a series of shear thinning elastic test fluids. The flow properties of the test fluids were independently measured with a Weissenberg Rheogoniometer. The power law index of the test fluids varied between 1.0 and 0.4. Particle Reynolds number based on 0 was in the range of 410–6 to 410–2. The difference between theoretically predicted values of drag coefficient and the experimentally measured values is less than ±7.5%. In addition, it is found that the Carreau viscosity equation can be used to predict the elastic parameter of primary normal stress difference with moderate to good accuracy for all the polymer solutions used in this work.
Zusammenfassung Einleitend wird ein Überblick über die früheren Untersuchungen betreffend die schleichende Strömung um eine Kugel gegeben. Die in der Literatur vorliegenden theoretischen Analysen sind auf schwach viskoelastische Flüssigkeiten beschränkt und sagen deshalb nur einen geringen Einfluß der Elastizität auf den Widerstand voraus. In dieser Veröffentlichung wird dagegen eine genäherte theoretische Analyse für die schleichende Strömung um eine starre Kugel in einem unendlich ausgedehnten Medium gegeben, bei welcher zur Lösung der Bewegungsgleichungen und der Kontinuitätsgleichung in Verbindung mit den rheologischen Stoffgleichungen vonCarreau ein Variationsprinzip verwendet wird. Die theoretischen Ergebnisse werden mittels eines Korrekturfaktors zum newtonschen Widerstandskoeffizienten beschrieben. Dieser Korrekturfaktor ist eine Funktion des Potenz-Gesetz-Exponentenn, des Verhältnisses der Grenzviskositäten ( 0)/0 und einer dimensionslosen Zeit, welche das elastische Verhalten kennzeichnet. Die Ergebnisse werden in graphischer Form unter Zugrundelegung eines realistischen Wertebereichs dieser dimensionslosen Gruppen dargestellt.Um diese theoretischen Voraussagen zu verifizieren, wurde der Widerstandskoeffizient für eine Anzahl von Kugeln in einer Reihe von Scherentzähung aufweisenden elastischen Probeflüssigkeiten gemessen. Die Fließeigenschaften dieser Flüssigkeiten wurden zusätzlich mit dem Weissenberg-Rheogoniometer bestimmt. Der Potenz-Gesetz-Exponent variierte dabei zwischen 1,0 und 0,4. Die auf den Kugeldurchmesser und die Nullviskosität bezogenen Reynolds-Zahlen lagen zwischen 410–6 und 410–2. Der Unterschied zwischen theoretisch vorausgesagten und experimentell bestimmten Widerstandskoeffizienten war kleiner als ±7,5%. Außerdem wurde noch gefunden, daß die Viskositätsgleichung vonCarreau dazu verwendet werden kann, den elastischen Parameter erste Normalspannungs-Differenz für alle in dieser Untersuchung verwendeten Polymerlösungen mit mäßiger bis guter Genauigkeit vorauszusagen.

Notation C d drag coefficient - d diameter of sphere - f external body forces in equation of motion [2] - F d drag force - g acceleration due to gravity - J integral defined in eq. [3] - n a parameter in the Carreau viscosity eq. [6] - p isotropic pressure term in equation of motion [2] - r,, spherical coordinates - R radius of sphere - Re 0, Re1 Reynolds numbers defined in eq. [16] - t time - u i ,u j velocities in equation of motion [2] - u r ,u r and components of velocity - V terminal velocity of sphere in unbounded medium - V volume, in eq. [3] - X correction factor to the drag force, eq. [14] - y,z dimensionless spherical coordinates, eq. [9] - ratio of two Reynolds numbers given by eq. [16] - shear rate - apparent viscosity - 0, zero shear rate and infinite shear rate viscosities respectively - a parameter in the Carreau viscosity eq. [6] - the dimensionless time, defined in eq. [11] - second invariant of the rate of deformation tensor - a parameter in the stream function, eq. [8] - stream function - p,f densities of sphere and fluid respectively With 7 figures and 1 table  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号