首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
We derive an equation of motion of mean firat-passage time (MFPT) for the nonlinear system driven by the external and internal noise simultaneously. An approximate formula of MFPT is obtained by the perturbation technique. We find the coupling effect of the internal and the external noise for the MFPT. Using the steepest descending method we obtain the MFPT for a specific model.  相似文献   

2.
We investigate a stochastic differential equation with general noxilinearity in the noise.With the help of the projection operator techniques, we derive an integro-differential equation for the probability density and an approximate equation for the mean firstpassage time (MFPT). The concrete calculations are made for two important examples.  相似文献   

3.
We investigate a multidimensional system described by a set of stochastic differential equations in which the multiplicative noise is assumed to be an O-U noise. With the help of the projection operator technique, we derive an integrodifferential equation for the probability density and an approximate equation for the mean first-passage time (MFPT).Under some approximation, we obtain an effective Fokker-Planck equation and apply the equation to the single mode laser problem. The concrete calculations of MFPT are made with an important example.  相似文献   

4.
The mean first-passage time (MFPT) of an asymmetric bistable system between multiplicative non-Gaussian noise and additive Gaussian white noise with nonzero cross-correlation time is investigated. Firstly, the non-Markov process is reduced to the Markov process through a path-integral approach; Secondly, the approximate Fokker Planck equation is obtained by applying the unified colored noise approximation and the.Novikov Theorem. The steady-state probability distribution (SPD) is also obtained. The basal functional analysis and simplification are employed to obtain the approximate expressions of MFPT T^±. The effects of the asymmetry parameter β, the non-Gaussian parameter (measures deviation from Gaussian character) r, the noise correlation times τ and τ2, the coupling coefficient A, the intensities D and a of noise on the MFPT are discussed. It is found that the asymmetry parameter β, the non-Gaussian parameter r and the coupling coefficient A can induce phase transition. Moreover, the main findings are that the effect of self-existent parameters (D, α, and τ) of noise and cross-correlation parameters (A, 7-2) between noises on MFPT T^± is different.  相似文献   

5.
The dynamical characters of a theoretical anti-tumor model under immune surveillance subjected to a pure multiplicative noise are investigated. The effects of pure multiplicative noise on the stationary probability distribution (SPD) and the mean first passage time (MFPT) are analysed based on the approximate Fokker-Planck equation of the system in detail. For the anti-tumor model, with the multiplicative noise intensity D increasing, the tumorpopulation move towards to extinction and the extinction rate can beenhanced. Numerical simulations are carried out to check the approximate theoretical results. Reasonably good agreement is obtained.  相似文献   

6.
The mean first-passage time of a bistable system with time-delayed feedback driven by multiplicative non-Gaussian noise and additive Gaussian white noise is investigated. Firstly, the non-Markov process is reduced to the Markov process through a path-integral approach; Secondly, the approximate Fokker-Planck equation is obtained by applying the unified coloured noise approximation, the small time delay approximation and the Novikov Theorem. The functional analysis and simplification are employed to obtain the approximate expressions of MFPT. The effects of non-Gaussian parameter (measures deviation from Gaussian character) r, the delay time τ, the noise correlation time τ0, the intensities D and α of noise on the MFPT are discussed. It is found that the escape time could be reduced by increasing the delay time τ, the noise correlation time τ0, or by reducing the intensities D and α. As far as we know, this is the first time to consider the effect of delay time on the mean first-passage time in the stochastic dynamical system.  相似文献   

7.
In this paper, we consider the problem of mean first-passage time (MFPT) in quantum mechanics; the MFPT is the average time of the transition from a given initial state, passing through some intermediate states, to a given final state for the first time. We apply the method developed in statistical mechanics for calculating the MFPT of random walks to calculate the MFPT of a transition process. As applications, we (1) calculate the MFPT for multiple-state systems, (2) discuss transition processes occurring in an environmental background, (3) consider a roundabout transition in a hydrogen atom, and (4) apply the approach to laser theory.  相似文献   

8.
We study the effect of time delay in the FitzHugh-Nagumo neural model with correlations between multiplicative and additive noise terms. Based on the corresponding Fokker-Planck equation, the explicit expressions of the stationary probability distribution function (SPDF), the mean first passage time (MFPT) and the signal-to-noise ratio (SNR) are obtained, respectively. Research results show that: (i) the system undergoes a succession of two phase transitions (i.e., the reentrance phenomenon) as the noise correlation parameter is increased and a (single) phase transition as the time delay is increased. (ii) The MFPT as a function of the multiplicative noise intensity exhibits a maximum. This maximum for MFPT identifies the noise enhanced stability (NES) effect, the noise correlation parameter intensifies the NES effect while the time delay, and the additive noise intensity weakens it. (iii) The existence of a maximum in the SNR as a function of the multiplicative noise intensity is the identifying characteristic of the stochastic resonance (SR) phenomenon, the noise correlation parameter enhances the SR while the time delay, and the additive noise intensity weaken it.  相似文献   

9.
Recently a great deal of effort has been made to explicitly determine the mean first-passage time (MFPT) between two nodes averaged over all pairs of nodes on a fractal network. In this paper, we first propose a family of generalized delayed recursive trees characterized by two parameters, where the existing nodes have a time delay to produce new nodes. We then study the MFPT of random walks on this kind of recursive tree and investigate the effect of the time delay on the MFPT. By relating random walks to electrical networks, we obtain an exact formula for the MFPT and verify it by numerical calculations. Based on the obtained results, we further show that the MFPT of delayed recursive trees is much shorter, implying that the efficiency of random walks is much higher compared with the non-delayed counterpart. Our study provides a deeper understanding of random walks on delayed fractal networks.  相似文献   

10.
The mean first-passage time (MFPT) and the weak signal detection method of stochastic resonance (SR) on multi-stable nonlinear system under color correlated noise are studied. Using the uniform color noise approximation method, the Fokker-Planck equation of the system is obtained, and the steady-state probability density function of the multi-stable system driven by the multiplicative noise and additive noise is derived. On the basis of this, the formula of MFPT is derived, and the influence of parameters on the MFPT is analyzed. The problem of weak signal detection under color noise background is studied based on multi-stable SR. The results of simulation and experiment show that the method can effectively extract the frequency feature of weak signal in the background of color noise.  相似文献   

11.
We study an unbiased random walk on dual Sierpinski gaskets embedded in d-dimensional Euclidean spaces. We first determine the mean first-passage time (MFPT) between a particular pair of nodes based on the connection between the MFPTs and the effective resistance. Then, by using the Laplacian spectra, we evaluate analytically the global MFPT (GMFPT), i.e., MFPT between two nodes averaged over all node pairs. Concerning these two quantities, we obtain explicit solutions and show how they vary with the number of network nodes. Finally, we relate our results for the case of d = 2 to the well-known Hanoi Towers problem.  相似文献   

12.
We generalize the method for the calculation of the mean first-passage time (MFPT) developed by Weiss et al.[1] to the situations where the processes are driven by non-Markovian multivalued noises. For simplicity, we restrict ourselves to three cases: the noises have rectangular, long-tail and combined temporal distributions. The concrete calculations of MFPT are made with an important example and explicit analytical expressions are obtained.  相似文献   

13.
Random walks on complex networks   总被引:3,自引:0,他引:3  
We investigate random walks on complex networks and derive an exact expression for the mean first-passage time (MFPT) between two nodes. We introduce for each node the random walk centrality C, which is the ratio between its coordination number and a characteristic relaxation time, and show that it determines essentially the MFPT. The centrality of a node determines the relative speed by which a node can receive and spread information over the network in a random process. Numerical simulations of an ensemble of random walkers moving on paradigmatic network models confirm this analytical prediction.  相似文献   

14.
Considering the time-delayed feedback and environmental perturbations in spin-crossover system, we construct a stochastic delayed differential equation to study the state transitions from the low spin (LS) state to the high spin (HS) state in spin-crossover solids. It is shown that the delayed feedback and noise can induce optical bistability and state transitions. The mean first-passage time (MFPT) of the transition from the LS state to the HS state as the function of the noise intensity exhibits a maximum, and the noise-enhanced stability is observed. However the MFPT decreases with increase of the delayed feedback intensity, thus the delayed feedback accelerates the conversion from the LS state to the HS state.  相似文献   

15.
李静辉 《中国物理快报》2007,24(11):3070-3073
We study the escape for the mean first passage time (MFPT) over a potential barrier for a system with non- fluctuating potential barrier and only driven by a three-state noise. It is shown that in some circumstances, the three-state noise can induce the resonant activation for the MFPT over the potential barrier; but in other circumstances, it can not. There are three resonant activations for the MFPT over the potential barrier, which are respectively as the functions of the transition rates of the three-state noise.  相似文献   

16.
李贝  靳艳飞 《物理学报》2013,62(15):150503-150503
研究了色关联的乘性高斯色噪声和加性高斯色噪声驱动的分段非线性系统中, 噪声强度和相关时间对平均首次穿越时间的影响. 利用一致有色噪声近似方法和最速下降方法, 推导出系统平均首次穿越时间的表达式. 研究结果表明: 系统的平均首次穿越时间随着乘性噪声的增加会出现单峰结构, 即“共振”现象, 峰值会随着加性噪声强度和噪声之间关联强度的增加而减小. 而平均首次穿越时间作为加性噪声的函数呈单调曲线, 说明乘性噪声和加性噪声对平均首次穿越时间的影响不同. 此外, 乘性和加性噪声关联时间以及互关联时间在正关联时和负关联时 对系统平均首次穿越时间的影响是不同的. 关键词: 色噪声 分段非线性系统 平均首次穿越时间  相似文献   

17.
《Physics letters. A》2006,359(6):573-576
The escape for the mean first passage time (MFPT) over the fluctuating potential barrier for system only driven by a dichotomous noise is investigated. It is found that, in some circumstances, the dichotomous noise can induce the resonant activation for the MFPT over the fluctuating potential barrier, but in other circumstances, it cannot. There are two resonant activations for the MFPT. One is the MFPT as a function of the flipping rate of the fluctuating potential barrier, the other is the MFPT as a function of the transition rate of the dichotomous noise.  相似文献   

18.
张晓燕  徐伟 《中国物理》2007,16(4):928-932
In this paper, the effect of every parameter (including p, q, r, \la, \tau) on the mean first-passage time (MFPT) is investigated in an asymmetric bistable system driven by colour-correlated noise. The expression of MFPT has been obtained by applying the steepest-descent approximation. Numerical results show that (1) the intensity of multiplicative noise p and the intensity of additive noise q play different roles in the MFPT of the system, (2) suppression appears on the curve of the MFPT with small \la (e.g. \la<0.5) but there is a peak on the curve of the MFPT when \la is big (e.g. \la >0.5), and (3) with different values of r (e.g. r=0.1, 0.5, 1.5), the effort of \tau on the MFPT is diverse.  相似文献   

19.
In this paper,we study the scaling for the mean first-passage time(MFPT) of the random walks on a generalized Koch network with a trap.Through the network construction,where the initial state is transformed from a triangle to a polygon,we obtain the exact scaling for the MFPT.We show that the MFPT grows linearly with the number of nodes and the dimensions of the polygon in the large limit of the network order.In addition,we determine the exponents of scaling efficiency characterizing the random walks.Our results are the generalizations of those derived for the Koch network,which shed light on the analysis of random walks over various fractal networks.  相似文献   

20.
The problem of escape from a domain of attraction is applied to the case of discrete dynamical systems possessing stable and unstable fixed points. In the presence of noise, the otherwise stable fixed point of a nonlinear map becomes metastable, due to noise-induced hopping events, which eventually pass the unstable fixed point. Exact integral equations for the moments of the first passage time variable are derived, as well as an upper bound for the first moment. In the limit of weak noise, the integral equation for the first moment, i.e., the mean first passage time (MFPT), is treated, both numerically and analytically. The exponential leading part of the MFPT is given by the ratio of the noise-induced invariant probability at the stable fixed point and unstable fixed point, respectively. The evaluation of the prefactor is more subtle: It is characterized by a jump at the exit boundaries, which is the result of a discontinuous boundary layer function obeying an inhomogeneous integral equation. The jump at the boundary is shown to be always less than one-half of the maximum value of the MFPT. On the basis of a clear-cut separation of time scales, the MFPT is related to the escape rate to leave the domain of attraction and other transport coefficients, such as the diffusion coefficient. Alternatively, the rate can also be obtained if one evaluates the current-carrying flux that results if particles are continuously injected into the domain of attraction and captured beyond the exit boundaries. The two methods are shown to yield identical results for the escape rate of the weak noise result for the MFPT, respectively. As a byproduct of this study, we obtain general analytic expressions for the invariant probability of noisy maps with a small amount of nonlinearity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号