首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We explore the phases of supersymmetric U(N) gauge theories with fundamental matter that arise as deformations of SQCD by the addition of a superpotential for the adjoint chiral multiplet. As the parameters in the superpotential are varied, the vacua of this theory sweep out various branches, which in some cases have multiple semiclassical limits. In such limits, we recover the vacua of various product gauge group theories, with flavors charged under some group factors. We describe in detail the structure of the vacua in both classical and quantum regimes, and develop general techniques such as an addition and a multiplication map which relate vacua of different gauge theories. We also consider possible indices characterizing different branches and potential relationships with matrix models.  相似文献   

2.
3.
We derive the general formula for the supertrace of the quartic mass matrix in a general supersymmetric gauge theory, with arbitrary representations for the chiral multiplets. This formula clarifies the non-renormalization theorems in presence of gauge interactions and gives “extended renormalization theorems” for N = 2 and N = 4 supersymmetric Yang-Mills theories. In particular we find the known result that gren = gbare for the N = 4 theory and the new result mren = mbare for the N = 2 gauge interactions of massive hypermultiplets. We give arguments to the extent that the latter non-renormalization theorem persists to all orders in perturbation theory.  相似文献   

4.
《Nuclear Physics B》1999,558(3):573-588
Some N = 1 gauge theories, including SQED and NF = 1 SQCD, have the property that, for arbitrary superpotentials, all stationary points of the potential V = F + D are D-flat. For others, stationary points of V are complex gauge transformations of D-flat configurations. As an implication, the technique to parametrize the moduli space of supersymmetric vacua in terms of a set of basic holomorphic G invariants can be extended to non-supersymmetric vacua. A similar situation is found in non-gauge theories with a compact global symmetry group.  相似文献   

5.
Jan de Boer  Kentaro Hori  Yaron Oz   《Nuclear Physics B》1997,500(1-3):163-191
We study the structure of the moduli spaces of vacua and superpotentials of N = 2 supersymmetric gauge theories in three dimensions. By analyzing the instanton corrections, we compute the exact superpotentials and determine the quantum Coulomb and Higgs branches of the theories in the weak coupling regions. We find candidates for non-trivial N = 2 superconformal field theories at the singularities of the moduli spaces. The analysis is carried out explicitly for gauge groups U(Nc) and SU(Nc) with N f flavors. We show that the field theory results are in complete agreement with the intersecting branes picture. We also compute the exact superpotentials for arbitrary gauge groups and arbitrary matter content.  相似文献   

6.
Some aspects of supersymmetric gauge theories and discussed. It is shown that dynamical supersymmetry breaking does not occur in supersymmetric QED in higher dimensions. The cancellation of both local (perturbative) and global (non-perturbative) gauge anomalies are also discussed in supersymmetric gauge theories. We argue that there is no dynamical supersymmetry breaking in higher dimensions in any supersymmetric gauge theories free of gauge anomalies. It is also shown that for supersymmetric gauge theories in higher dimensions with a compact connected simple gauge group, when the local anomaly-free condition is satisfied, there can be at most a possibleZ 2 global gauge anomaly in extended supersymmetricSO(10) (or spin (10)) gauge theories inD=10 dimensions containing additional Weyl fermions in a spinor representation ofSO(10) (or spin (10)). In four dimensions with local anomaly-free condition satisfied, the only possible global gauge anomalies in supersymmetric gauge theories areZ 2 global gauge anomalies for extended supersymmetricSP(2N) (N=rank) gauge theories containing additional Weyl fermions in a representation ofSP(2N) with an odd 2nd-order Dynkin index.  相似文献   

7.
We make connections between studies in the condensed matter literature on quantum phase transitions in square lattice antiferromagnets, and results in the particle theory literature on abelian supersymmetric gauge theories in 2 + 1 dimensions. In particular, we point out that supersymmetric U(1) gauge theories (with particle content similar, but not identical, to those of theories of doped antiferromagnets) provide rigorous examples of quantum phase transitions which do not obey the Landau-Ginzburg-Wilson paradigm (often referred to as transitions realizing “deconfined criticality”). We also make connections between supersymmetric mirror symmetries and condensed matter particle-vortex dualities.  相似文献   

8.
We discuss in detail the supersymmetric instanton calculus of NSVZ and extend it to chiral matter fields in the, adjoint representation. The constant Green functions induced by the instanton of supersymmetricSU (2) gauge theories are calculated systematically for the cases with and without scalar vev's bigger than the scale of the gauge theory and for nonvanishing small masses of chiral fields. Oneinstanton contributions to the Green functions containing four fields without large vevs would disturb clustering; but they are argued to vanish; two-instanton effects then lead to a pattern which quantitatively agrees with factorization and the anomaly relation.  相似文献   

9.
The ten dimensional string theories as well as eleven dimensional supergravity are conjectured to arise as limits of a more basic theory, traditionally dubbed M-theory. This notion is confined to the ten dimensional supersymmetric theories. String theory, however, also contains ten dimensional non-supersymmetric theories that have not been incorporated into this picture. In this note we explore the possibility of generating the low energy spectra of various non-supersymmetric heterotic string vacua from the Horava–Witten model. We argue that this can be achieved by imposing on the Horava–Witten model an invariance with respect to some extra operators which identify the orbifold fixed planes in a non-trivial way, and we demonstrate it for the E8 and SO(16)×SO(16) heterotic string vacua in ten dimensions.  相似文献   

10.
曹贞斌 《中国物理C(英文版)》2018,42(5):053104-053104
We study the maximally supersymmetric AdS backgrounds of matter-coupled N=3 gauged supergravity in four dimensions. We find that to admit supersymmetric AdS vacua, the gauge group can only be of the form G_0×H?SO(3,n) with G_0 =SO(3),SO(3,1) or SL(3,R) and H a compact group of dimension n+3-dim(G_0). We also show that these AdS vacua have no moduli, namely they correspond to critical points in field space.  相似文献   

11.
Antisymmetric tensor fields Bμν subject to the gauge transformation δBμν = ?μξν ? ?νξμ can describe spinless particles. We investigate the properties of field theories with a “non-abelian generalization” of this invariance. One class of such theories is equivalent to non-linear principal chiral σ-models, another to massive Yang-Mills theories. A supersymmetric analogue in 2 + 2 superspace is constructed and leads to the supersymmetric σ-model defined on a general riemannian manifold.  相似文献   

12.
《Nuclear Physics B》1995,456(3):633-668
We present an explicit expression for the topological invariants associated to SU(2) monopoles in the fundamental representation on spin four-manifolds. The computation of these invariants is based on the analysis of their corresponding topological quantum field theory, and it turns out that they can be expressed in terms of Seiberg-Witten invariants. In this analysis we use recent exact results on the moduli space of vacua of the untwisted N = 1 and N = 2 supersymmetric counterparts of the topological quantum field theory under consideration, as well as on electric-magnetic duality for N = 2 supersymmetric gauge theories.  相似文献   

13.
《Nuclear Physics B》1986,263(1):173-186
We examine the supersymmetry Ward identity for supersymmetric Yang-Mills theories in the axial gauge. In the pure N = 1 (no matter) case the Ward identity leads to supersymmetric counterterms to all orders. This result does not survive the introduction of matter fields, however, and we therefore conclude that the gauge is not useful in the context of supersymmetry.  相似文献   

14.
The finite action Euclidean solutions of gauge theories are shown to indicate the existence of tunneling between topologically distinct vacuum configurations. Diagonalization of the Hamiltonian then leads to a continuum of vacua. The construction and properties of these vacua are analyzed. In non-abelian theories of the strong interactions one finds spontaneous symmetry breaking of axial baryon number without the generation of a Goldstone boson, a mechanism for chiral SU(N) symmetry breaking and a possible source of T violation.  相似文献   

15.
We describe a large new class of four‐dimensional supersymmetric string vacua defined as compactifications of the E8 × E8 and the SO(32) heterotic string on smooth Calabi‐Yau threefolds with unitary gauge bundles and heterotic five‐branes. The conventional gauge symmetry breaking via Wilson lines is replaced by the embedding of non‐flat line bundles into the ten‐dimensional gauge group, thus opening up the way for phenomenologically interesting string compactifications on simply connected manifolds. After a detailed analysis of the four‐dimensional effective theory we exemplify the general framework by means of a couple of explicit examples involving the spectral cover construction of stable holomorphic bundles. As for the SO(32) heterotic string, the resulting vacua can be viewed, in the S‐dual Type I picture, as a generalisation of magnetized D9/D5‐brane models. In the case of the E8 × E8 string, we find a natural way to construct realistic MSSM‐like models, either directly or via a flipped SU(5) GUT scenario.  相似文献   

16.
《Physics Reports》2004,392(3):121-189
M theory compactifications on G2 holonomy manifolds, whilst supersymmetric, require singularities in order to obtain non-Abelian gauge groups, chiral fermions and other properties necessary for a realistic model of particle physics. We review recent progress in understanding the physics of such singularities. Our main aim is to describe the techniques which have been used to develop our understanding of M theory physics near these singularities. In parallel, we also describe similar sorts of singularities in Spin(7) holonomy manifolds which correspond to the properties of three dimensional field theories. As an application, we review how various aspects of strongly coupled gauge theories, such as confinement, mass gap and non-perturbative phase transitions may be given a simple explanation in M theory.  相似文献   

17.
We investigate orbifold compactifications of the heterotic string, addressing in detail their construction, classification and phenomenological potential. We present a strategy to search for models resembling the minimal supersymmetric extension of the standard model (MSSM) in ℤ6‐II orbifold compactifications. We find several MSSM candidates with the gauge group and the exact spectrum of the MSSM, and supersymmetric vacua below the compactification scale. They also exhibit the following realistic features: R‐parity, seesaw suppressed neutrino masses, and intermediate scale of supersymmetry breakdown. In addition, we find that similar models also exist in other ℤN orbifolds and in the SO(32) heterotic theory.  相似文献   

18.
We investigate how in supersymmetric gauge theories non-perturbative effects are able to generate non-trivial vacuum properties otherwise forbidden by perturbative non-renormalization theorems. This conclusion can be reliably drawn since the constancy of certain Green functions — due to supersymmetry (SUSY) — allows one to connect vacuum-dominated large distances with short-distance behaviour which is reliably computed by instanton methods. In all the cases we discuss (without matter, with massive or massless matter in real representations and, finally, with matter in complex representations) instanton calculations imply the occurrence of a variety of condensates. For the pure SUSY gauge theory, a gluino condensate induces the spontaneous breaking of Z2N. For massive super-quantum chromodynamics (SQCD) we find a peculiar mass dependence of matter condensates whose origin is traced to mass singularities of non-zero mode instanton contributions. These contributions force the massless limit of SQCD to differ from the strictly massless case, in which the spontaneous breaking of chiral symmetries is induced. Inconsistency with an anomaly equation forces either infinite matter condensates or spontaneous SUSY breaking in the massless cases. For non-constant Green functions, instantons are shown to provide new calculable short-distance singularities of an obvious non-perturbative nature.  相似文献   

19.
We show that there exist supersymmetric Minkowski vacua on Type IIB toroidal orientifold with general flux compactifications where the RR tadpole cancellation conditions can be relaxed elegantly. Then we present a realistic Pati–Salam like model. At the string scale, the gauge symmetry can be broken down to the Standard Model (SM) gauge symmetry, the gauge coupling unification can be achieved naturally, and all the extra chiral exotic particles can be decoupled so that we have the supersymmetric SMs with/without SM singlet(s) below the string scale. The observed SM fermion masses and mixings can also be obtained. In addition, the unified gauge coupling, the dilaton, the complex structure moduli, the real parts of the Kähler moduli and the sum of the imaginary parts of the Kähler moduli can be determined as functions of the four-dimensional dilaton and fluxes, and can be estimated as well.  相似文献   

20.
《Nuclear Physics B》1996,459(3):455-496
We study in detail the space of perturbations of a pair of dual N = 1 supersymmetric theories based on an SU(Nc) gauge theory with an adjoint X and fundamentals with a superpotential which is polynomial in X. The equivalence between them depends on non-trivial facts about polynomial equations, i.e. singularity theory. The classical chiral rings of the two theories are different. Quantum mechanically there are new relations in the chiral rings which ensure their equivalence. Duality interchanges “trivial” classical relations in one theory with quantum relations in the other and vice versa. We also speculate about the behavior of the theory without the superpotential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号