首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A transport theory is formulated within a time-dependent shell-model approach. Time averaging of the equations for macroscopic quantities lead to irreversibility and justifies weak-coupling limit and Markov approximation for the (energy-conserving) one- and two-body collision terms. Two coupled equations for the occupation probabilities of dynamical single-particle states and for the collective variable are derived and explicit formulas for transition rates, dynamical forces, mass parameters and friction coefficients are given. The applicability of the formulation in terms of characteristic quantities of nuclear systems is considered in detail and some peculiarities due to memory effects in the initial equilibration process of heavy-ion collisions are discussed.  相似文献   

2.
3.
4.
We discuss two independent methods of solution of a master equation whose biased jump transition rates account for long jumps of Lévy-stable type and admit a Boltzmannian (thermal) equilibrium to arise in the large time asymptotics of a probability density function ρ(x, t). Our main goal is to demonstrate a compatibility of a direct solution method (an explicit, albeit numerically assisted, integration of the master equation) with an indirect pathwise procedure, recently proposed in [Physica A 392, 3485, (2013)] as a valid tool for a dynamical analysis of non-Langevin jump-type processes. The path-wise method heavily relies on an accumulation of large sample path data, that are generated by means of a properly tailored Gillespie’s algorithm. Their statistical analysis in turn allows to infer the dynamics of ρ(x, t). However, no consistency check has been completed so far to demonstrate that both methods are fully compatible and indeed provide a solution of the same dynamical problem. Presently we remove this gap, with a focus on potential deficiencies (various cutoffs, including those upon the jump size) of approximations involved in simulation routines and solutions protocols.  相似文献   

5.
A theory is presented describing the order-disorder transition in binary crystals growing on the condition of supersaturation from nonsolid phases. The theory applies to systems that crystallize with an almost perfectly ordered structure if exposed to conditions close to thermodynamic equilibrium. Based on a model that assumes incorporation and detachment of single atoms to occur at the kink sites of mono-atomic steps existing at an otherwise smooth crystal surface a kinetic master equation for the time dependence of configuration probabilities has been formulated. Several simplifying assumptions have been employed. Any solution for the steady-state conditions depends on a roughness parameter λ, the far-order parameter η, the incorporation frequency ω+ and a parameter q, related to the atomic interaction energies. The solutions are discussed for conditions prevailing near equilibrium with η 1 and within the range of order-disorder transition with η 0. The analysis reveals that for different incorporation frequencies different critical values of the parameter q exist for which a transition from an ordered to a disordered phase is predicted to occur. Each of these critical values of q corresponds to a critical transition temperature Tt.  相似文献   

6.
7.
8.
The so-called renormalization group (RG) method is applied to derive kinetic and transport equations from the respective microscopic equations. The derived equations include the Boltzmann equation in classical mechanics, the Fokker-Planck equation, and a rate equation in a quantum field theoretical model. Utilizing the formulation of the RG method which elucidates the important role played by the choice of the initial conditions, the general structure and the underlying assumptions in the derivation of kinetic equations in the RG method are clarified. It is shown that the present formulation naturally leads to the choice for the initial value of the microscopic distribution function at arbitrary time t0 to be on the averaged distribution function to be determined. The averaged distribution function may be thought of as an integral constant of the solution of the microscopic evolution equation; the RG equation gives the slow dynamics of the would-be initial constant, which is actually the kinetic equation governing the averaged distribution function. It is further shown that the averaging as given above gives rise to a coarse-graining of the time-derivative which is expressed with the initial time t0, and thereby leads to time-irreversible equations even from a time-reversible equation. It is shown that a further reduction of the Boltzmann equation to fluid dynamical equations and the adiabatic elimination of fast variables in the Fokker-Planck equation are also performed in a unified way in the present method.  相似文献   

9.
The steady states of a simple nonlinear chemical system kept far from equilibrium are analyzed. A standard macroscopic analysis shows that the nonlinearity introduces an instability causing a transition analogous to a thermodynamic first-order phase transition. Near this transition the system exhibits hysteresis between two alternative steady states. Fluctuations are introduced into this model using a stochastic master equation. The solution of this master equation is unique, preventing two alternative exactly stable states. However, a quasi-hysteresis occurs involving transitions between alternative metastable steady states on a time scale that is longer than that of the fluctuations around the mean steady state values by a factor of the forme , where ø is the height of a generalized thermodynamic potential barrier between the two states. In the thermodynamic limit this time scale tends to infinity and we have essentially two alternative stable steady states.  相似文献   

10.
Stochastic analyses are conducted of model neural networks of the generalized Little-Hopfield-Hemmen type, in which the synaptic connections with linearly embeddedp sets of patterns are free of symmetric ones, and a Glauber dynamics of a Markovian type is assumed. Two kinds of approaches are taken to study the stochastic dynamical behavior of the network system. First, by developing the method of the nonlinear master equation in the thermodynamic limitN, an exact self-consistent equation is derived for the time evolultion of the pattern overlaps which play the role of the order parameters of the system. The self-consistent equation is shown to describe almost completely the macroscopic dynamical behavior of the network system. Second, conducting the system-size expansion of the master equation for theN-body probability distribution of the Glauber dynamics makes it possible to analyze the fluctuations. In the course of the analysis, the self-consistent equation for the pattern overlaps is derived again. The main result of the rigorous fluctuation analysis is that as far as the fluctuations are concerned, the time course of the pattern overlap fluctuations behaves independently of the fluctuations in the remaining modes of the system's macrovariables, in accordance with the self-determining property of the macroscopic motion of the pattern overlaps for neural networks with linear synaptic couplings.  相似文献   

11.
We analyze a single-electron transistor composed of two semi-infinite one-dimensional quantum wires and a relatively short segment between them. We describe each wire section by a Luttinger model, and treat tunneling events in the sequential approximation when the system's dynamics can be described by a master equation. We show that the steady-state occupation probabilities in the strongly interacting regime depend only on the energies of the states and follow a universal form that depends on the source-drain voltage and the interaction strength.  相似文献   

12.
For random growing networks, Barabás and Albert proposed a kind of model in Barabás et al. [Physica A 272 (1999) 173], i.e. model A. In this paper, for model A, we give the differential format of master equation of degree distribution and obtain its analytical solution. The obtained result P(kt) is the time evolution of degree distribution. P(kt) is composed of two terms. At given finite time, one term decays exponentially, the other reflects size effect. At infinite time, the degree distribution is the same as that of Barabás and Albert. In this paper, we also discuss the normalization of degree distribution P(kt) in detail.  相似文献   

13.
14.
15.
A general theory is given for the time evolution of nonlinear stochastic variables a(t) = {ai(t)} whose statistical distribution is changing due to the self-organization of “macroscopic” order. The dynamics of a(t) is conveniently expressed by self-consistent equations for the ensemble average x(t) = 〈a(t)〉, the supersystem, and for the deviations ξ(t) = a(t)?x(t), the subsystem; the systems are connected to each other by feedback loops in their dynamics. The time dependence of the variance and the correlation function ofξ(t) are studied in terms of relaxation toward local equilibrium underx(t) and dynamical coupling withx(t). A special example shows that the stochastic motions of subsystems are pulled together by the motion of the supersystem through feedback loops, and that this pull-together phenomenon occurs when symmetry-breaking instability exists in nonlinear systems.  相似文献   

16.
J. Chee 《Annals of Physics》2009,324(1):97-105
The time evolution is studied for the Landau level problem with a general time dependent electric field E(t) in a plane perpendicular to the magnetic field. A general and explicit factorization of the time evolution operator is obtained with each factor having a clear physical interpretation. The factorization consists of a geometric factor (path-ordered magnetic translation), a dynamical factor generated by the usual time-independent Landau Hamiltonian, and a nonadiabatic factor that determines the transition probabilities among the Landau levels. Since the path-ordered magnetic translation and the nonadiabatic factor are, up to completely determined numerical phase factors, just ordinary exponentials whose exponents are explicitly expressible in terms of the canonical variables, all of the factors in the factorization are explicitly constructed. New quantum interference effects are implied by this result. The factorization is unique from the point of view of the quantum adiabatic theorem and provides a seemingly first rigorous demonstration of how the quantum adiabatic theorem (incorporating the Berry phase phenomenon) is realized when infinitely degenerate energy levels are involved. Since the factorization separates the effect caused by the electric field into a geometric factor and a nonadiabatic factor, it makes possible to calculate the nonadiabatic transition probabilities near the adiabatic limit. A formula for matrix elements that determines the mixing of the Landau levels for a general, nonadiabatic evolution is also provided by the factorization.  相似文献   

17.
We consider a classical charged gas (with self-consistent Coulomb interaction) described by a solvable linearized Boltzmann equation with thermalization on uniformly distributed scatterers. It is shown that if one scales the time t, the reciprocal space coordinate k and the Debye length l as λ2t, (1/λ)k, λl, respectively, in the λ → ∞ limit the charge density is equal to the solution of the corresponding diffusion-conduction (macroscopic) equation.  相似文献   

18.
A comparison has been made between the deterministic and stochastic (master equation) formulation of nonlinear chemical rate processes with multiple stationary states. We have shown, via two specific examples of chemical reaction schemes, that the master equations have quasi-stationary state solutions which agree with the various initial condition dependent equilibrium solutions of the deterministic equations. The presence of fluctuations in the stochastic formulation leads to true equilibrium solutions, i.e. solutions which are independent of initial conditions as t → ∞. We show that the stochastic formulation leads to two distinct time scales for relaxation. The mean time for the reaction system to reach the quasi-stationary states from any initial state is of O(N0) where N is a measure of the size of the reaction system. The mean time for relaxation from a quasi-stationary state to the true equilibrium state is O(eN). The results obtained from the stochastic formulation as regards the number and location of the quasi-stationary states are in complete agreement with the deterministic results.  相似文献   

19.
20.
The exact solution of thet-matrix integral equation derived from the self-consistent Nagaoka equations in the theory of dilute magnetic alloys is established. It is shown that the unique solution for thet-matrix involving all Kondo type anomalies can be found under quite general assumptions. Using the exact solution we have calculated thermodynamic properties of dilute magnetic alloys. It is found that the excessive specific heat of the system due to the anomalous scattering of conduction electrons from the magnetic impurities is of the order ofBoltzmann's constant per local moment at low temperatures. In the limit of vanishing temperature the specific heat goes to zero asymptotically as (lnT)?4. Finally the entropy difference of the interacting system as compared to the free system is calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号