首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adsorption of CO on Ni(111) surfaces was studied by means of LEED, UPS and thermal desorption spectroscopy. On an initially clean surface adsorbed CO forms a √3 × √3R30° structure at θ = 0.33 whose unit cell is continuously compressed with increasing coverage leading to a c4 × 2-structure at θ = 0.5. Beyond this coverage a more weakly bound phase characterized by a √72 × √72R19° LEED pattern is formed which is interpreted with a hexagonal close-packed arrangement (θ = 0.57) where all CO molecules are either in “bridge” or in single-site positions with a mutual distance of 3.3 Å. If CO is adsorbed on a surface precovered by oxygen (exhibiting an O 2 × 2 structure) a partially disordered coadsorbate 2 × 2 structure with θo = θco = 0.25 is formed where the CO adsorption energy is lowered by about 4 kcal/mole due to repulsive interactions. In this case the photoemission spectrum exhibits not a simple superposition of the features arising from the single-component adsorbates (i.e. maxima at 5.5 eV below the Fermi level with Oad, and at 7.8 (5σ + 1π) and 10.6 eV (4σ) with COad, respectively), but the peak derived from the CO 4σ level is shifted by about 0.3 eV towards higher ionization energies.  相似文献   

2.
Hydrogen adsorbs on Ni(100) and Pd(111) surfaces without the formation of additional diffraction spots in the LEED patterns. Measurements of LEED intensities revealed that adsorbed hydrogen layers cause considerable changes even in such cases where displacements of surface atoms (“reconstructive adsorption”) may be excluded. After hydrogen adsorption on Ni(100) the intensities of Bragg beams are uniformly lowered whereas the background intensity increases which is attributed to the formation of a disordered adsorbed layer. With Pd(111) adsorbed hydrogen causes a slight decrease of the background intensity and characteristic modifications of the intensity/voltage curve of the (0,0) beam, suggesting the formation of an ordered 1 × 1 structure. In the latter case energy shifts of the primary Bragg maxima were observed and are interpreted as being caused by an expansion of the layer spacing in the surface region by about 2% owing the partial dissolution of the hydrogen.  相似文献   

3.
《Surface science》1986,173(1):148-159
The interaction of acetylene and ethylene with a clean and oxygen covered Pd surface has been studied at a temperature of 473 K. The measurements were performed on a hydrogen sensitive Pd-MOS structure making it possible to obtain direct information on the dissociation of both hydrogen and oxygen containing species on a palladium surface. Desorption studies were also performed as well as ultraviolet photoelectron spectroscopy and work function measurements. The studies show that both acetylene and ethylene adsorb dissociatively at this temperature leaving mainly carbon on the surface. When an oxygen covered Pd surface is exposed to C2H2 or C2H4 carbon dioxide and water will be formed and desorb until the surface is oxygen free. In the case of acetylene the presence of preadsorbed oxygen does not block or prevent the C2H2 dissociation on the surface. For C2H4, a large preadsorbed oxygen coverage (⪆ 0.45) will have an impeding effect on the dissociation. The CO2 desorption is oxygen coverage dependent contrary to the H2O desorption. This is due to the fact that hydrogen has a large lateral mobility on the surface while carbon has not. Both the CO2 and H2O reactions are, however, due to the same type of mechanisms.  相似文献   

4.
An atom superposition and election delocalization (ASED) technique applied to water adsorption on a small cluster model of Pt(111) shows weak and reversible chemisorption and facile and reversible hydrogen transfer to preadsorbed oxygen atoms as observed by Fisher, Sexton and Gland in EELS and UPS studies. Our theory predicts much stronger adsorption of water to Fe(100) with low barriers to dehydrogenation, in agreement with high temperature LEED-Auger results of Dwyer, Simmons, and Wei and wide temperature range XPS studies of Akimov. We predict a low barrier to transfer of hydrogen from water to adsorbed oxygen atoms, forming hydroxyl groups on the iron surface, and a fairly low barrier to the reverse reaction. On both metals we find hydroxyl groups are strongly held. Our calculations produce a trend toward greater negativity on going from adsorbed water to hydroxyl groups, and to hydroxyl dissociation products on these surfaces. We present reaction mechanisms, transition state geometries, and analysis in terms of molecular orbital theory and the total energy. It is found that the platinum is generally less reactive than iron toward water and hydroxyl species because platinum orbitals are less diffuse and the platinum s-d band lies lower, closer to adsorbate energy levels such that adsorbate-platinum antibonding orbitals are filled.  相似文献   

5.
The adsorption and reaction of H2O on clean and oxygen precovered Ni(110) surfaces was studied by XPS from 100 to 520 K. At low temperature (T<150 K), a multilayer adsorption of H2O on the clean surface with nearly constant sticking coefficient was observed. The O 1s binding energy shifted with coverage from 533.5 to 534.4 eV. H2O adsorption on an oxygen precovered Ni(110) surface in the temperature range from 150 to 300 K leads to an O 1s double peak with maxima at 531.0 and 532.6 eV for T=150 K (530.8 and 532.8 eV at 300 K), proposed to be due to hydrogen bonded Oads… HOH species on the surface. For T>350 K, only one sharp peak at 530.0 eV binding energy was detected, due to a dissociation of H2O into Oads and H2. The s-shaped O 1s intensity-exposure curves are discussed on the basis of an autocatalytic process with a temperature dependent precursor state.  相似文献   

6.
《Surface science》1986,176(3):567-577
The interaction of ethylenediamine with a Ni(111) surface was investigated in the temperature range 170–420 K by means of X-ray photoelectron spectroscopy. Molecularly absorbed species were predominant below 290 K giving the C1s and the N 1s peaks at 286.4 and 399.9 eV (at 250 K) and at 286.0 and 399.7 eV (at 290 K), respectively. The amount dehydrogenated species increased during heating up to 420 K resulting in a variation of the N 1s binding energy as 399.7 → 397.7 → 397.5 → 397.7 eV. The variation was correlated with successive dehydrogenation reactions such as
The interaction of acetic acid with molecularly absorbed ethylenediamine below 200 K brought about the appearance of the N 1s peak at 401.9 eV assignable to the ammonium form of nitrogen at the expense of the N 1s peak at 400.1 eV. The remaining N 1s peak is located at 399.6 eV. Ethylenediamine absorbed at 290 K, showing the N 1s peak at 399.7 eV, gave no ammonium form even after interaction with acetic acid at 220 K. These results indicate that a part of ethylenediamine was unidentate and the rest was bidentate (chelating) on the Ni(111) surface at 250 K and all of the molecules were bidentate at 290 K. When acetic acid was adsorbed on a clean Ni(111) surface at 165 K, formation of an acetyl group was indicated besides acetate.  相似文献   

7.
8.
Electron energy loss spectra of clean and oxygen covered GaAs(110) surfaces have been measured with a four grid retarding field analyser. Loss spectra of clean cleaved p- and n-type surfaces are slightly different and different states of adsorption for the oxygen on the two surfaces are found. The loss peaks which are common in the spectra obtained from clean surfaces of both types of material have been interpreted in terms of bulk and surface excitations. The data associated with the bulk excitations are in good agreement with previous optical and electron transmission data while loss peaks at 11.5 and 18.5 eV are interpreted as the surface plasma loss and a surface state transition respectively. For n-type material extra loss peaks were observed. In the case of oxygen adsorption on these surfaces new loss peaks were found at 13.5, 17.2 and 28.1 eV in both spectra and are assumed to be characteristic of the oxygen. Further, for n-type material an extra peak occurs at 8.2 eV.  相似文献   

9.
F. Solymosi  A. Berk    K. R  v  sz 《Surface science》1990,240(1-3):50-58
The adsorption of methyl chloride on a Pd(100) surface has been investigated by ultraviolet photoelectron spectroscopy (UPS), electron energy loss spectroscopy (in the electronic range, EELS), temperature-programmed desorption (TPD) and work function change. CH3Cl adsorbs with high sticking probability at 80–100 K. UPS and TDS spectra suggest that the adsorption of CH3Cl is molecular at 100 K, with a little distortion of the corresponding gas-phase molecular electronic structure. No dissociation of CH3Cl was observed even up to 550 K. By means of TPD, we distinguished two adsorption states with desorption energies of 46.9 and 33.4 kJ/mol. The formation of a condensed layer at 105–110 K was also observed. Adsorption of CH3Cl caused a significant work function decrease, Δ = −0.91 eV, indicating a dipole with positive end pointed away from the surface. The effects of electronegative additives, preadsorbed Cl and O were also examined. Preadsorbed Cl caused a slight destabilization of adsorbed CH3Cl at lower concentration, prevented the adsorption of CH3Cl at higher concentration and facilitated the formation of a condensed layer. No such effect was experienced in the presence of preadsorbed O.  相似文献   

10.
UV photoemission spectroscopy (UPS) with He I and He II radiation is used to study the interaction of C2H4 with clean and oxygen precovered Cu(110) surfaces at 90 K. On the clean surface only-bonding of the C2H4 molecules is observed whereas preadsorbed oxygen causes a second molecular orbital to be involved in the chemisorption. This result is consistent with the differing behaviour of the work function change during thermal desorption of C2H4.  相似文献   

11.
Electron energy-loss spectra have been measured on Ni(100) surfaces, clean and following oxygen and carbon monoxide adsorption, at primary energies of 40–300 eV. The observed peaks at 9.1, 14 and 19 eV in the clean-surface spectrum are ascribed to the bulk plasmon of the 4s electrons, the surface plasmon, and the bulk plasmon of the coupled 3d + 4s electron, respectively, and the weak but sharp peak at 33 eV is tentatively attributed to the localized many-body effect in the final state. Assignments of the loss structures on the gas-covered surfaces have been attempted.  相似文献   

12.
Auger electron spectroscopy of cesium adsorbed on clean W(100) shows that the well known N4,5O2,3O2,3 peak can be resolved into three peaks at 43–45.8 and 48.4 eV. Simultaneously as well defined peak appears at 62 eV and it is shown that this transition involves ionization of the N4N5 cesium level. An additional peak appears at 56.5 eV as cesium adsorbs on a previously oxygen-covered W(100) surface. Its existence is discussed and might indicate that oxygen valence electrons are involved in this new transition.  相似文献   

13.
Both Photoemission Yield Spectroscopy (PYS) and Auger Electron Spectroscopy (AES) have been used in the study of the electronic properties of the clean GaAs(100) surface prepared by IBA procedure and subsequently exposed to oxygen. For the clean GaAs(100)c(8 × 2) surface, the values of the work function and the absolute band bending were 4.20 ± 0.02 eV and −0.23 ± 0.06 eV, respectively, which confirms the pinning of the Fermi level EF, and two filled electronic surface state bands localized in the band gap below the Fermi level were observed. After exposition of this surface to 103 L of oxygen, the electronic surface state band localized just below the Fermi level EF disappeared, and the work function and the absolute band bending increased by only 0.12eV, whereas for the higher oxygen exposures of 104L and 105L, only small increases in the values of the work function and the absolute bending by 0.04 eV and 0.03 eV, respectively, were observed.  相似文献   

14.
An intense, essentially photon free, helium metastable beam has been used to cause electron ejection from the clean, oxygen and sulphur covered Ni(100) surface, in a system equiped with an AES facility to monitor surface cleanness. The ejected electron energy distribution obtained for the clean Ni(100) surface is narrow and peaked at ~2 eV, unlike the distribution obtained from INS studies, and consequently indicates different de-excitation mechanisms for incident ions and excited atoms. The ejected electron distribution from the adsorbate covered surface is also narrow, but peaked at ~1 eV with structure which is essentially independent of the nature of the adsorbate. The yield of ejected electrons is found to increase linearly with coverage of both oxygen and sulphur, in contrast to the results obtained from INS. These data indicate that Auger neutralization does not occur at the surface; the possibility of Auger de-excitation is considered.  相似文献   

15.
《Surface science》1986,175(3):445-464
The adsorption and reaction of acetonitrile (CH3CN) on clean and oxygen covered Ag(110) surfaces has been studied using temperature programmed reaction spectroscopy (TPRS), isotope exchange, chemical displacement reactions and high resolution electron energy loss spectroscopy (EELS). On the clean Ag(110) surface, CH3CN was reversibly adsorbed, desorbing with an activation energy of 10 kcal mol-1 at 166 K from a monolayer state and at 158 K from a multilayer state. Vibrational spectra of multilayer, monolayer and sub-monolayer CH3CN were in excellent agreement with that of gas phase CH3CN indicating that CH3CN is only weakly bonded to the clean Ag(110) surface. On the partially oxidized surface CH3CN reacts with atomic oxygen to form adsorbed CH2CN, OH and H2O in addition to forming another molecular adsorption state with a desorption peak at 240 K. This molecular state shows a CN stretching frequency of 1840 cm-1, which is indicative of substantial rehybridization of the CN bond and is associated with side-on coordination via the π system. The CH2CN species is stable up to 430 K, where C-H bond breaking and reformation begins, leading to the formation of CH3CN at 480 K and HCN at 510 K and leaving only carbon on the surface. In the presence of excess oxygen atoms C-H bond breaking and reformation is more facile leading to additional desorption peaks for CH3CN and H2O at 420 K. This destabilizing effect of O(a) on Ch2CN(a) is explained in terms of an anionic (CH2CN-1) species. Comparison of the vibrational spectra from CH2CN(a) and CD2CN(a) supports the following assignment for the modes of adsorbed CH2CN: ν(Ag-C) 215: δ(CCN) 545; ϱt(CH2) 695; ϱw(CH2) 850; ν(C-C) 960; ϱr(CH2) 1060; δ(CH2) 1375; ν(CN) 2075; and ν(CH2) 2940 cm-1. These results serve to further indicate the wide applicability of the acid-base reaction concept for reactions between gas phase Brönsted acids and adsorbed oxygen atoms on solver surfaces.  相似文献   

16.
The adsorption of oxygen at exposures of up to 105 L on differently oriented, ion-bombarded and annealed GaAs surfaces was investigated by UPS. Coverages θAs for the clean surfaces and oxygen coverages for the oxygen exposed surfaces were estimated by additional SXPS measurements. It was concluded that at small exposures molecular and atomic adsorption are comparable in quantity and that atomic adsorption (oxidation) becomes maximum at θAs, ≈ 0.2 for (111)Ga and (001) surfaces. Bonding of oxygen molecules should involve Ga sites. Specific bonding of oxygen atoms (O-Ga or O-As) was not indicated by the two stable UPS peaks as they occurred for arsenic coverages from 0 to 0.5 and did not shift their energy positions. They simply indicate the two states of the adsorbate atoms, single and double bonds, to substrate atoms. For the surfaces prepared here, monolayer coverage by oxygen was obtained at about 1010L. Likewise adsorption of H2O was investigated.  相似文献   

17.
We found, by correlating band bending, ultraviolet photoemission spectroscopy, and partial yield spectroscopy measurements, that Fermi level pinning at midgap of n-type GaAs(110) is caused by extrinsic states. The exact nature of these states is not yet clear, but the surfaces with Fermi level pinning were strained as evidence by a smeared valence band emission. This smearing was removed by as little as one oxygen per 104 to 105 surface atoms. This implies that the oxygen has very long range effects in causing spontanesous but small rearrangement of the surface lattice and removing surface strains. When about 5% of a monolayer of oxygen is adsorbed, a major change in the electronic structure takes place. Again, the oxygen coverage is very small, which suggests long range effects now leading to a fairly large rearrrangement of the surface lattice. Finally, from comparing the oxygen induced emission for exposures greater than 107 L O2, with the spectra from gas photoemission measurements on molecular oxygen, we suggest that the oxygen is chemisorbed as a molecule on the (110) surface of GaAs.  相似文献   

18.
E. Preuss 《Surface science》1981,110(2):287-293
A formula for the He+ ion survival probability against neutralization is presented, which was derived from the fit of the azimuthal angular dependence of the Ni peak heights on clean and O covered Ni(001) surfaces observed in LEISS experiments and computer simulations. The formula contains a collision- and two Auger-type neutralization terms for the ion trajectories prolonged by multiple collisions above the “neutralization surface plane”, which was assumed to be corrugated and shaped like muffin-tins.  相似文献   

19.
The interaction of cobalt with clean and sulfur covered Mo(100) surfaces was investigated with Auger electron spectroscopy (AES), low energy electron diffraction (LEED) and temperature programmed desorption (TPD). On the clean surface, the deposition and subsequent annealing of one monolayer of cobalt resulted in the formation of an ordered overlayer with (1 × 1) surface structure. When cobalt was deposited on sulfur covered Mo(100) surfaces, after annealing the sulfur overlayer migrated on top of the cobalt layer. This topmost sulfur overlayer did not significantly affect the thermal desorption of cobalt from the Mo(100) surface. Various ordered structures of sulfur, cobalt and coadsorbed sulfur and cobalt were observed by LEED. A new surface structure showing (3 × 1) symmetry was observed when at least one monolayer of cobalt was deposited and annealed at 870 K on an ordered monolayer of sulfur on the Mo(100) surface. This surface structure was stable in ultrahigh vacuum up to 940 K.  相似文献   

20.
The effect of preadsorbed alkali metal atoms Na, K and Cs on CO adsorption on Ni(100) has been studied using Auger spectroscopy and thermal desorption. It was found that the presence of alkali metals causes an appearance of several more tightly bound states in the CO thermal desorption spectra. The observed difference in carbon and oxygen Auger peak line shape on a bare and alkali modified Ni(100) is indicative that the presence of alkali adatoms induces CO decomposition on the Ni(100) surface. The fraction of dissociated CO increases with the amount of alkali adatoms present. At the same overlayer coverage the dissociation probability increases in the sequence Na, K, Cs. A comparison of the strength of the promoting effect on CO dissociation with the changes in the surface electron density in the presence of alkali adatoms has shown that at low overlayer coverages the electronic factor plays a major role in explaining the action of the surface modificators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号