首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monoethyl succinate was produced by partial esterification of succinic anhydride with ethanol using Amberlyst 15® as catalyst. After separation and purification, the purity of monoethyl succinate was confirmed by nuclear magnetic resonance (NMR). Vapor pressure of monoethyl succinate was measured and correlated with Antoine equation. Vapor-liquid equilibria at constant temperature were measured for the binary systems ethyl acetate + monoethyl succinate, acetic acid + monoethyl succinate, and water + monoethyl succinate at 323.15 K, and ethanol + monoethyl succinate at 313.15 K. Binary parameters for the NRTL equations were obtained by fitting experimental data using the regression tool in ASPEN Plus® using the Hayden-O’Connell method for vapor phase fugacities. The model agrees reasonably well with the experimental data.  相似文献   

2.
This paper reports experimental results of a study of the phase behaviour of binary mixtures of ethane + hexadecane. In the near-critical region of ethane liquid + vapour and solid hexadecane + liquid two-phase boundaries have been measured. Also the three-phase equilibrium solid hexadecane + liquid + vapour has been determined experimentally. The experimental data cover the complete mole fraction range. Pressures up to 18 MPa were applied and the investigation was performed in a temperature region from about 260 K up to 450 K.  相似文献   

3.
《Fluid Phase Equilibria》1988,41(3):245-256
Experimental results for various types of phase behaviour which can occur in the binary ethane + docosane system are presented. The experimental data cover various two-phase boundaries and the three-phase equilibria solid docosane + liquid + vapour and liquid + liquid + vapour. In addition, p,V,T measurements of liquid docosane are carried out. The experimental work is performed within a temperature range of ∼ 290–370 K and at pressures of up to 16 MPa.  相似文献   

4.
《Fluid Phase Equilibria》1999,154(1):139-151
Isothermal vapor–liquid equilibria for propane+hydrogen fluoride have been measured. The experimental data are correlated with the association model proposed by Lencka and Anderko for the mixtures containing hydrogen fluoride and the relevant parameters are presented. The recalculated parameters of the association model for pure hydrogen fluoride are presented. The problems occurred in the applications of the association model for the mixtures containing hydrogen fluoride are discussed. The correlation was found to be in good agreement with the experimental data. However, the calculated equilibrium pressures at very diluted compositions of hydrogen fluoride below about 0.01 were shown rather higher than the experimental values.  相似文献   

5.
The liquid-liquid-vapor loci for the binary mixtures CO2 + n-hexylbenzene, n-heptylbenzene, and n-octylbenzene were experimentally studied. The compositions and molar volumes of the liquid phases are reported along with the pressure and temperature. For these three alkylbenzenes, the nature of the liquid-liquid-vapor loci experiences a transition, with the CO2 + n-heptylbenzene mixture exhibiting two separate liquid-liquid-vapor branches.  相似文献   

6.
《Fluid Phase Equilibria》1998,145(2):287-299
Isobaric vapor-liquid equilibria were obtained for the systems 1-propanol + chlorobenzene and 1-butanol + chlorobenzene at 200 and 300 kPa using a dynamic still. The mole fraction of the alcohol in the azeotropic point increases with pressure and for the 1-propanol + chlorobenzene system at 300 kPa, the azeotrope has disappeared. The two systems satisfy the point-to-point thermodynamic consistency test. Both systems show a positive deviation from ideality. The data were well correlated with the Margules, van Laar, Wilson. NRTL and UNIQUAC equations.  相似文献   

7.
Downstream processing is a major part of nearly all processes in the chemical industries. Most separation processes in the chemical (and related) industries for fluid mixtures are based on phase equilibrium phenomena. The majority of separation processes can be modelled assuming that chemical reactions are of no (or very minor) importance, i.e., assuming that the overall speciation remains unchanged during a separation process. However, there are also a large number of industrially important processes where the thermodynamic properties are influenced by chemical reactions. The phase equilibrium of chemical reactive mixtures has been a major research area of the author’s group over nearly 40 years. In this contribution, three examples from that research are discussed. The first example deals with the vapour phase dimerisation of carboxylic acids and its consequences on phase equilibrium phenomena and phase equilibrium predictions. The second example deals with the solubility of sour gases (e.g., carbon dioxide and sulfur dioxide) in aqueous solutions of ammonia. That topic has been of interest for many years, e.g., in relation with the gasification and liquefaction of coal and, more recently, with the removal of carbon dioxide from flue gas in the “chilled ammonia process”. The third example deals with phase equilibrium phenomena in aqueous solutions of polyelectrolytes. It deals with the phenomenon of “counter ion condensation” and methods to model the Gibbs free energy of such solutions.  相似文献   

8.
Vapor-liquid equilibria (VLE) data for the carbon dioxide + methanol system was measured at 293.15, 298.15, 310.15, and 323.15 K. Phase behavior measurements were made in a high-pressure visual cell with variable volume, based on the static-analytic method. The pressure range under investigation was between 4.8 and 95.1 bar. The Soave-Redlich-Kwong (SRK)-EOS coupled with Huron-Vidal (HV) mixing rules and a reduced UNIQUAC model, was used in a semi-predictive approach, in order to represent the phase behavior (critical curve, isothermal VLE) of the system. The topology of the phase behavior of the carbon dioxide + methanol system is satisfactory predicted with the SRK/HV-residual UNIQUAC model.   相似文献   

9.
Three forms of equations for describing experimental data on liquid and vapor pressures, depending on temperature and composition at phase equilibria in binary mixtures, are proposed and evaluated. It is determined that the form of equation depends on the relationship between the temperature of a mixture and the critical temperatures of the components of the mixture. Exact data on the phase equilibria in nitrogenoxygen, nitrogen-argon, and oxygen-argon mixtures [1] are approximated to assess the effectiveness of the equations’ forms. It is found that the equations also allow us to determine the phase composition at a given temperature and pressure and temperatures of phases at a given pressure and composition.  相似文献   

10.
The present paper forms part of a series of studies on the ternary system PbO-P2O5 -PbCl2. The side binary system PbO-PbCl2 has been investigated over the entire composition range and its phase diagram has been established. The components form three oxychlorides: Pb5Cl2O4, Pb3Cl2O2 and Pb2Cl2O. The examinations were carried out by means of thermal, microscopic, dilatometric, X-ray and IR absorption analyses. X-ray identification data for Pb5Cl2O4 are presented.
Zusammenfassung Vorliegende Arbeit ist Teil einer Untersuchungsreihe des ternÄren Systemes PbO-P2O5-PbCl2. Dabei wurde das binÄre Untersystem PbO-PbCl2 im gesamten Konzentrationsbereich untersucht und ein Phasendiagramm erstellt. Die Komponenten bilden die drei Oxidchloride Pb5Cl2O4, Pb3Cl2O2 und Pb2Cl2O. Die Untersuchungen wurden mittels mikroskopischer, dilatometrischer, röntgenographischer, IR- und Thermoanalyse durchgeführt. Die röntgenographischen Angaben für Pb5Cl2O4 werden gegeben.


The author is most grateful to Or. Janusz Matuszewski for bis help in the X-ray investigations.  相似文献   

11.
12.
The density and viscosity of propane mixed with 66/34 trans/cis-decahydronaphthalene were measured over a wide range of temperatures (323-423 K), pressures (2.5-208 bar), and compositions (0-65 mol% propane). For conditions giving two phases, the composition of the dense phase was measured in addition to the density and viscosity. The modified Sanchez-Lacombe Equation of State (MSLEOS) was used with a single linearly temperature-dependent pseudo-binary interaction parameter to correlate the phase compositions and densities. The compositions and densities of the mixtures were captured well with absolute average deviations between the model and the data of 5.3% and 2.3%, respectively. The mixture viscosities were computed from a free volume model (FVM) by using a single constant binary interaction parameter. Density predictions from the MSLEOS were used as input mixture density values required for the FVM. The FVM was found to correlate well with the mixture viscosity data with an absolute average deviation between the model and the data of 5.7%.  相似文献   

13.
《Fluid Phase Equilibria》1988,43(1):105-113
Isothermal vapor—liquid equilibria (P−x, y) for four binary systems of propylene with methanol, acetone, diethyl ether and propylene oxide were measured using a swing method at 25°C. Also, the saturated molar volume of the liquid phase for each system was obtained by a weighing method. The data obtained were correlated by use of the Soave-Redlich-Wong equation. The P-x, y relations were described satisfactorily, except for the methanol—propylene  相似文献   

14.
Isothermal vapor-liquid equilibrium (VLE) of the following systems was measured with a recirculation still: diethyl sulfide + ethanol at 343.15 K, diethyl sulfide + 1-propanol at 358.15 K, and diethyl sulfide + propyl acetate at 363.15 K. Diethyl sulfide + ethanol at 343.15 K and diethyl sulfide + 1-propanol at 358.15 K systems exhibit positive deviation from Raoult's law, whereas diethyl sulfide + propyl acetate at 363.15 K system exhibits only slight positive deviation from Raoult's law. A maximum pressure azeotrope was found in the systems diethyl sulfide + ethanol (x1 = 0.372, P = 88.4 kPa, T = 343.15 K) and diethyl sulfide + 1-propanol (x1 = 0.640, P = 96.8 kPa, T = 358.15 K). No azeotropic behavior was found in diethyl sulfide + propyl acetate system at 363.15 K. The experimental results were correlated with the Wilson model and compared to COSMO-SAC predictive model. Liquid and vapor phase compositions were determined with gas chromatography. All measured data sets passed the thermodynamic consistency tests. The activity coefficients at infinite dilution are also presented.  相似文献   

15.
Adsorption equilibria for binary gas mixtures (methane-carbon dioxide, methane-ethane, and carbon dioxide-ethane) on the graphitized carbon black STH-2 were measured by the open flow method at 293.2 K. The experimental pressure range was (0 to 1.6) MPa. The extended Langmuir (EL) model and the ideal adsorption solution theory (IAST) have been adopted to predict the equilibria of binary gas mixtures. The results indicate that gas mixtures adsorbed on the homogeneous surface of STH-2 exhibit the nonideal behavior, which is mainly induced by adsorbate-adsorbate interactions. The real adsorption solution theory (RAST) has been used to analyze the property of the adsorbed mixtures. The activity coefficients have been correlated with the Wilson equation. The investigation demonstrates that the nonideality of adsorbed phase is completely dissimilar with the bulk liquid phase. The adsorption of the heavier component would benefit the adsorption of the lighter component.  相似文献   

16.
The liquid—liquid—vapor loci for the binary mixtures ethane + n-nonylbenzene, ethane + n-decylbenzene and ethane + n-undecylbenzene were experimentally studied. The pressure, temperature, and compositions and molar volumes of the liquid phases are reported along the loci. n-Nonylbenzene was found to be the first member of the n-alkylbenzene homologous series to exhibit liquid—liquid—vapor immiscibility with ethane. For the three alkylbenzenes studied, the liquid—liquid—vapor loci have the same type of behavior: they extend from a lower critical end point (LCEP) to an upper critical end point (K-point).  相似文献   

17.
The binary vapour-liquid equilibrium of seven systems of -caprolactam + octane, + decane, + dodecane, octane, + decane, + dodecane, of N-methylacetamide + octane, of N-ethylacetamide of N-methylpropionamide + octane and of N-methylpropionamid + -caprolactam was measured in the temperature range from 363 to 423 K and in the low pressure region. A static equilibrium apparatus for the measurements was constructed.

In the system N-methylpropionamide + octane measurements of liquid-liquid equilibrium were carried out in the temperature range from 310 K up to the critical solution temperature.

The experimental results were correlated applying activity coefficients models such as NRTL. The data obtained from our measurements were used to estimate UNIFAC interaction parameters for the groups CH2/CONHCH2, CH2/C5H10CONH and CONHCH2/C5H10CONH.  相似文献   


18.
A mean field theory is used to describe nematic phases of binary mixtures of biaxial molecules. Using a general pseudopotential consistent with the D2h symmetry of the constituent particles, the theory is used to calculate the elements of the order tensors necessary to describe the orientational order in binary mixtures in both uniaxial and biaxial nematic phases. For a single component, the model only requires one parameter, r2, a ratio of anisotropic interaction strengths, to predict the temperature dependence of the four order parameters. The temperature dependence of the orientational distribution functions is illustrated for both rod-like and plate-like molecules. For binary mixtures, three anisotropic interaction strengths, r1, r2, and r3, are needed to calculate the order parameters of both components as a function of concentration and temperature. The free energy is evaluated to predict the phase stability of the mixture. By systematically varying the anisotropic interaction strengths, temperature-concentration phase diagrams for a variety of molecular shapes are presented. The theoretical predictions suggest that binary mixtures of molecules with highly asymmetric shapes will display stable biaxial nematic phases.  相似文献   

19.
Isothermal vapor–liquid equilibrium (VLE) for 3-methylthiophene + 2,2,4-trimethylpentane at 368.15 K, 3-methylthiophene + 2,4,4-trimethyl-1-pentene at 368.15 K, 3-methylthiophene  + cyclohexane at 348.15 K, and 3-methylthiophene + 1-hexene at 333.15 K were measured with a recirculation still. All systems exhibit positive deviation from ideality. No azeotropic behavior was found in all systems. The experimental results were correlated with the Wilson model and also compared with the original UNIFAC and UNIFAC-Dortmund predictive models. Analyses of liquid and vapor-phase composition were determined with gas chromatography (GC). All VLE measurements passed the used thermodynamic consistency tests (integral, infinite dilution and point test). The activity coefficients at infinite dilution are also presented.  相似文献   

20.
Summary The solid-liquid phase diagrams of binary mixtures of ammonium alum with ammonium iron(III) alum, with aluminum nitrate nonahydrate and with ammonium nitrate and of aluminum sulfate hexadecahydrate with aluminum nitrate nonahydrate are presented. The alum rich branches of the former three-phase diagrams were fitted by the Ott equation. The specific enthalpy of fusion/freezing of some compositions of the former three mixtures was determined by differential drop calorimetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号