首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Using a synthesis of the functional integral and operator approaches we discuss the fermion-boson mapping and the role played by the Bose field algebra in the Hilbert space of two-dimensional gauge and anomalous gauge field theories with massive fermions. In QED2 with quartic self-interaction among massive fermions, the use of an auxiliary vector field introduces a redundant Bose field algebra that should not be considered as an element of the intrinsic algebraic structure defining the model. In anomalous chiral QED2 with massive fermions the effect of the chiral anomaly leads to the appearance in the mass operator of a spurious Bose field combination. This phase factor carries no fermion selection rule and the expected absence of Θ-vacuum in the anomalous model is displayed from the operator solution. Even in the anomalous model with massive Fermi fields, the introduction of the Wess-Zumino field replicates the theory, changing neither its algebraic content nor its physical content.  相似文献   

2.
We quantize the chiral Schwinger model by using the Batalin-Tyutin formalism. We show that one can systematically construct the first-class constraints and the desired involutive Hamiltonian, which naturally generates all secondary constraints. Fora>1, this Hamiltonian gives the gauge invariant Lagrangian including the well-known Wess-Zumino terms, while fora=1 the corresponding Lagrangian has the additional new type of the Wess-Zumino terms, which are irrelevant to the gauge symmetry.  相似文献   

3.
Chiral Schwinger model with the Faddeevian anomaly is considered. It is found that imposing a chiral constraint this model can be expressed in terms of chiral boson. The model when expressed in terms of chiral boson remains anomalous and the Gauss law of which gives anomalous Poisson brackets between itself. In spite of that a systematic BRST quantization is possible. The Wess-Zumino term corresponding to this theory appears automatically during the process of quantization. A gauge invariant reformulation of this model is also constructed. Unlike the former one gauge invariance is done here without any extension of phase space. This gauge invariant version maps onto the vector Schwinger model. The gauge invariant version of the chiral Schwinger model for a=2 has a massive field with identical mass however gauge invariant version obtained here does not map on to that.  相似文献   

4.
We quantize a generalized version of the Schwinger model, where the two chiral sectors couples with different strengths to theU(1) gauge field. Starting from a theory which includes a generalized Wess-Zumino term, we obtain the equal time commutation relation for physical fields, both the singular and non-singular cases are considered. The photon propagators are also computed in their gauge dependent and invariant versions.  相似文献   

5.
《Nuclear Physics B》1995,433(3):712-736
We reformulate the BRST quantisation of chiral Virasoro and W3 worldsheet gravities. Our approach follows directly the classic BRST formulation of Yang-Mills theory in employing a derivative gauge condition instead of the conventional conformal gauge condition, supplemented by an introduction of momenta in order to put the ghost action back into first-order form. The consequence of these simple changes is a considerable simplification of the BRST formulation, the evaluation of anomalies and the expression of Wess-Zumino consistency conditions. In particular, the transformation rules of all fields now constitute a canonical transformation generated by the BRST operator Q, and we obtain in this reformulation a new result that the anomaly in the BRST Ward identity is obtained by application of the anomalous operator Q2, calculated using operator products, to the gauge fermion.  相似文献   

6.
The gauge invariant theories of the generalized chiral Schwinger model are constructed in terms of two schemes with and without Wess-Zumino terms, respectively. Following the former scheme, we calculate the Wess-Zumino term which cancels the gauge anomaly, and then constitute the gauge invariant theory by adding the Wess-Zumino term to the original Lagrangian of the model. According to the latter, we modify the original Hamiltonian by adding a term composed of constraints of the model. It is so designed that the theory described by the modified Hamiltonian and its corresponding first-order Lagrangian maintains gauge invariance. We show by the canonical Dirac method that each of the two gauge invariant theories has the same physical spectrum as that of the original gauge noninvariant formulation.  相似文献   

7.
The gauge invariant theories of the generalized chiral Schwinger model are constructed in terms of two schemes with and without Wess-Zumino terms, respectively. Following the former scheme, we calculate the Wess-Zumino term which cancels the gauge anomaly, and then constitute the gauge invariant theory by adding the Wess-Zumino term to the original Lagrangian of the model. According to the latter, we modify the original Hamiltonian by adding a term composed of constraints of the model. It is so designed that the theory described by the modified Hamiltonian and its corresponding first-order Lagrangian maintains gauge invariance. We show by the canonical Dirac method that each of the two gauge invariant theories has the same physical spectrum as that of the original gauge noninvariant formulation.  相似文献   

8.
R. Flume 《Nuclear Physics B》1983,217(2):531-543
It is assumed that N = 1 supersymmetric Yang-Mills fields coupled to chiral matter fields can be renormalized in a covariant Wess-Zumino gauge with a minimal number of subtractions so that the Ward identities of supersymmetry, ordinary gauge invariance and matter-field-flavour symmetries are satisfied. The chiral Yukawa couplings are supposed to remain unrenormalized. I show that on the basis of these assumptions an N = 4 extended manifestly O(4) invariant theory can be constructed with finite Yukawa and φ4 couplings. A consequence of these non-renormalizations is the vanishing of the renormalization group β function.  相似文献   

9.
The N = 4 Yang-Mills theory is truncated to an N = 3 Yang-Mills theory and to an N = 2 Yang-Mills theory coupled to an N = 2 Wess-Zumino field. The whole procedure is performed in the light-cone gauge. It is then shown that these theories are unique even if we only insist on N = 3 or N = 2 supersymmetry respectively. Finally we show in detail how the introduction of the fermionic Wess-Zumino field renders the one-loop self-energy finite.  相似文献   

10.
This is a first step towards better superfield formulations of supersymmetric field theories. The simple Wess-Zumino model (including renormalizable interactions) is formulated in terms of an unconstrained, scalar superfield, obeying a wave equation that includes the square of the super Klein-Gordon operator. This wave equation is derived from an action principle, by unconstrained variation of the superfield. The physical content of the theory is the same as for the original formulation by Wess and Zumino, and the Feynman rules are identical to those of Grisaru, Roek and Siegel. Next, super electrodynamics, including minimal interactions with a scalar matter multiplet, is given a similar treatment. There is no need, in this case, to include higher derivatives in the Lagrangian. The matter field is an unconstrained, scalar superfield, and the gauge fields are also contained in an unconstrained, scalar superfield. The scattering matrix coincides with that of the conventional form of super electrodynamics with Wess-Zumino matter fields. Supersymmetric spinorial currents are found by simple and direct application of the Noetherian method, in superfield language. Conservation laws of the formD a J a =0 (resp.D a J ab =0) are derived from gauge invariance (resp. supersymmetry). Extension to super Yang-Mills theories is straightforward.On leave of absence from Universidad Complutense, Madrid. Permanent address: Department of Theoretical Physics, Universidad Complutense, 28040 Madrid, Spain.  相似文献   

11.
Via a supersymmetric generalization of the descent-equations we derive in Wess-Zumino gauge explicit expressions for chiral anomalies inN=1 supersymmetric Yang-Mills theory for space-time dimensions 2 and 4.  相似文献   

12.
The contribution of the a 1(1260) meson to the ρ(770) → 4π,ω(782) → 5π, and ø(1020) → 5π decay amplitudes is analyzed on the basis of the chiral model of pseudoscalar, vector, and axial-vector mesons that is based on generalized hidden local symmetry and which is supplemented with terms induced by the Wess-Zumino anomaly. It is shown that the intensities of the above decays are enhanced upon taking into account the a 1 meson in intermediate states. For the a 1-meson mass $m_{a_1 } $ varying from 1.23 GeV to $m_p \sqrt 2 = 1.09 GeV$ , the enhancement factor grows from 1.3 to 1.9.  相似文献   

13.
《Nuclear Physics B》1999,537(1-3):161-183
We investigate the perturbative part of Seiberg's low-energy effective action of N = 2 supersymmetric Yang-Mills theory in Wess-Zumino gauge in the conventional effective field theory technique. Using the method of constant field approximation and restricting the effective action with at most two derivatives and not more than four-fermion couplings, we show some features of the low-energy effective action given by Seiberg based on U(1)R anomaly and non-perturbative β-function arguments.  相似文献   

14.
We apply perturbation theory to the gauge invariant version of the chiral Schwinger model. The cancellation of anomalies is shown explicitly in terms of Feynman diagrams. We calculate the exact propagators for the gauge field, for the Wess-Zumino field and for the mixing between these fields. Using these propagators, we demonstrate the existence of a massive state.  相似文献   

15.
We obtain classical solutions to the field equations of the massless supersymmetric Wess-Zumino model and to the field equations of the interacting SU(2) gauge supermultiplet. This is done by applying finite supersymmetry transformations to the known solutions of the scalar field equation with ?4 interaction and the Yang-Mills field equations. The relevance of supersymmetry to the solution of classical field equations involving anticommuting fermion fields is discussed.  相似文献   

16.

We have considered the generalized version of chiral schwinger model with the Lorentz covariant masslike term for gauge field with the choice a ? r2 =?0. We carry out the quantization by the canonical Dirac method of both the gauge-invariant and non-invariant version of this model to determine the phase space structure. Therefore we have shown that the gauge invariant theory has the same physical spectrum as that of the original gauge noninvariant formulation.

  相似文献   

17.
We find that, in perturbation theory, non-light-cone axial gauges, N ° Aa (x) = 0, preserve the supersymmetry remaining in N = 1 supersymmetric YM theories, after imposing the Wess-Zumino gauge.  相似文献   

18.
The nonlinear σ-model with the Wess-Zumino action describes the nucleon as a soliton and incorporates the non-abelian chiral anomalies. Several studies have shown that the model works well except for the nucleon mass, which comes out consistently too large. We investigate this question beginning with the more general framework of the linear σ-model, which has besides a pseudoscalar meson sector, a fermion or quark sector, a scalar field and an interaction between the fermions via the scalar field. Using a path integral formulation, we express the fermion measure of the model as the product of a Jacobian and an invariant measure. Identifying this Jacobian as exp[iΓ wz] , we find that the model breaks up into two parts, when in the pseudoscalar meson sector the scalar field is replaced by its vacuum value. The pseudoscalar part of the model becomes the nonlinear σ-model with the Wess-Zumino actionΓ wz. The other part involves chiral fermions, the scalar field and their interaction. We continue this part back to the Minkowski space to determine its ground state and energy levels. We find that for a scalar field that vanishes at smallr, but rises sharply to its vacuum value at someR, the ground state energy of the interacting quark-scalar-field system can be lower than the ground state energy of the non-interacting quark system. This means the interaction between quarks and the scalar field can lead to a condensed ground state or vacuum and can reduce the overall energy of the system (a phase transition as in superconductivity). It is, therfore, not surprising that the nonlinear σ-model predicts too large a nucleon mass, since it implicitly assumes a normal non-interacting vacuum in the quark sector. Quarks are now quasiparticles that appear as excitations of the condensed vacuum. The nucleon structure that emerges from this investigation agrees fully with the phenomenological nucleon structure found from analysis of high energy elasticpp and \(\bar p\) p scattering at CERN ISR and SPS Collider.  相似文献   

19.
The role of chiral transformations in effective theories modeling Quantum Chromo Dynamics is reviewed. In the context of the Nambu-Jona-Lasinio model the hidden gauge and massive Yang-Mills approaches to vector mesons are linked by a special chiral transformation which removes the chiral field from the scalar-pseudoscalar sector. The chirally rotated axial vector meson field (à μ ) transforms homogeneously under flavor rotations and may thus be dropped without violating chiral symmetry. The fermion determinant for static meson field configurations is computed by summing the discretized eigenvalues of the Dirac Hamiltonian. It is discussed how the local chiral transformation loses its unitary character in a finite model space. This technical issue proves to be crucial for the construction of the soliton within the Nambu-Jona-Lasinio model when the chirally rotated axial vector field is neglected. In the background of this soliton the valence quark is strongly bound, and its eigenenergy turns out to be negative. This important feature, which usually is generated by non-vanishing axial vector profiles, is thus maintained by the simplificationà μ = 0.  相似文献   

20.
Based on the experimental observation that there is a coexisting region between the antiferromagnetic (AF) and d-wave superconducting (dSC) phases, the influences of gauge boson mass m a on chiral symmetry restoration and deconfinement phase transitions in QED3 are investigated simultaneously within a unified framework, i.e., Dyson–Schwinger equations. The results show that the chiral symmetry restoration phase transition in the presence of the gauge boson mass m a is a typical second-order phase transition; the chiral symmetry restoration and deconfinement phase transitions are coincident; the critical number of fermion flavors N c f decreases as the gauge boson mass m a increases, which implies that there exists a boundary that separates the N c f m a plane into chiral symmetry breaking/confinement region for (N c f , m a ) below the boundary and chiral symmetry restoration/deconfinement region for (N c f , m a ) above it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号