首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For any system of linear algebraic equations with integer coefficients and a bounded set of nonnegative integer solutions, an infinite number of equations exist, each of which has the same set of nonnegative integer solutions as the given system. Two approaches (sequential and simultaneous aggregation) to the problem of finding the latter equivalent equation are considered. New procedures for sequential and simultaneous aggregation are presented, which improve known results, i.e., provide equivalent equations with smaller coefficients.  相似文献   

2.
pth Power Lagrangian Method for Integer Programming   总被引:1,自引:0,他引:1  
When does there exist an optimal generating Lagrangian multiplier vector (that generates an optimal solution of an integer programming problem in a Lagrangian relaxation formulation), and in cases of nonexistence, can we produce the existence in some other equivalent representation space? Under what conditions does there exist an optimal primal-dual pair in integer programming? This paper considers both questions. A theoretical characterization of the perturbation function in integer programming yields a new insight on the existence of an optimal generating Lagrangian multiplier vector, the existence of an optimal primal-dual pair, and the duality gap. The proposed pth power Lagrangian method convexifies the perturbation function and guarantees the existence of an optimal generating Lagrangian multiplier vector. A condition for the existence of an optimal primal-dual pair is given for the Lagrangian relaxation method to be successful in identifying an optimal solution of the primal problem via the maximization of the Lagrangian dual. The existence of an optimal primal-dual pair is assured for cases with a single Lagrangian constraint, while adopting the pth power Lagrangian method. This paper then shows that an integer programming problem with multiple constraints can be always converted into an equivalent form with a single surrogate constraint. Therefore, success of a dual search is guaranteed for a general class of finite integer programming problems with a prominent feature of a one-dimensional dual search.  相似文献   

3.
When the follower's optimality conditions are both necessary and sufficient, the nonlinear bilevel program can be solved as a global optimization problem. The complementary slackness condition is usually the complicating constraint in such problems. We show how this constraint can be replaced by an equivalent system of convex and separable quadratic constraints. In this paper, we propose different methods for finding the global minimum of a concave function subject to quadratic separable constraints. The first method is of the branch and bound type, and is based on rectangular partitions to obtain upper and lower bounds. Convergence of the proposed algorithm is also proved. For computational purposes, different procedures that accelerate the convergence of the proposed algorithm are analysed. The second method is based on piecewise linear approximations of the constraint functions. When the constraints are convex, the problem is reduced to global concave minimization subject to linear constraints. In the case of non-convex constraints, we use zero-one integer variables to linearize the constraints. The number of integer variables depends only on the concave parts of the constraint functions.Parts of the present paper were prepared while the second author was visiting Georgia Tech and the University of Florida.  相似文献   

4.
A method of disaggregation of Diophantine equation with integer coefficients and Boolean variables is presented. The method allows transforming a single equation into an equivalent system of equations with small coefficients.  相似文献   

5.
The special constraint structure and large dimension are characteristic for multistage stochastic optimization. This results from modeling future uncertainty via branching process or scenario tree. Most efficient algorithms for solving this type of problems use certain decomposition schemes, and often only a part of the whole set of scenarios is taken into account in order to make the problem tractable.We propose a primal–dual method based on constraint aggregation, which constructs a sequence of iterates converging to a solution of the initial problem. At each iteration, however, only a reduced sub-problem with smaller number of aggregate constraints has to be solved. Number of aggregates and their composition are determined by the user, and the procedure for calculating aggregates can be parallelized. The method provides a posteriori estimates of the quality of the current solution approximation in terms of the objective function value and the residual.Results of numerical tests for a portfolio allocation problem with quadratic utility function are presented.  相似文献   

6.
It is well known that the MacWilliams transform of the weight enumerator of some code having integer coefficients is equivalent to a set of congruences having integer solutions. In this paper, we prove an equivalent condition of Ward’s bound on dimension of divisible codes, which is part of this set of congruences having integer solutions. This new interpretation makes the generalization of Ward’s bound an explicit one.  相似文献   

7.
We propose a decomposition algorithm for a special class of nonconvex mixed integer nonlinear programming problems which have an assignment constraint. If the assignment decisions are decoupled from the remaining constraints of the optimization problem, we propose to use a column enumeration approach. The master problem is a partitioning problem whose objective function coefficients are computed via subproblems. These problems can be linear, mixed integer linear, (non-)convex nonlinear, or mixed integer nonlinear. However, the important property of the subproblems is that we can compute their exact global optimum quickly. The proposed technique will be illustrated solving a cutting problem with optimum nonlinear programming subproblems.  相似文献   

8.
Mixed-integer quadratic programming   总被引:5,自引:0,他引:5  
This paper considers mixed-integer quadratic programs in which the objective function is quadratic in the integer and in the continuous variables, and the constraints are linear in the variables of both types. The generalized Benders' decomposition is a suitable approach for solving such programs. However, the program does not become more tractable if this method is used, since Benders' cuts are quadratic in the integer variables. A new equivalent formulation that renders the program tractable is developed, under which the dual objective function is linear in the integer variables and the dual constraint set is independent of these variables. Benders' cuts that are derived from the new formulation are linear in the integer variables, and the original problem is decomposed into a series of integer linear master problems and standard quadratic subproblems. The new formulation does not introduce new primary variables or new constraints into the computational steps of the decomposition algorithm.The author wishes to thank two anonymous referees for their helpful comments and suggestions for revising the paper.  相似文献   

9.
A general constraint aggregation technique is proposed for convex optimization problems. At each iteration a set of convex inequalities and linear equations is replaced by a single surrogate inequality formed as a linear combination of the original constraints. After solving the simplified subproblem, new aggregation coefficients are calculated and the iteration continues. This general aggregation principle is incorporated into a number of specific algorithms. Convergence of the new methods is proved and speed of convergence analyzed. Next, dual interpretation of the method is provided and application to decomposable problems is discussed. Finally, a numerical illustration is given.  相似文献   

10.
This paper deals with linear and integer programming problems in which the constraint matrix is a binet matrix. Linear programs can be solved with the generalized network simplex method, while integer programs are converted to a matching problem. It is also proved that an integral binet matrix has strong Chvátal rank 1.  相似文献   

11.
Given a general mixed integer program, we automatically detect block structures in the constraint matrix together with the coupling by capacity constraints arising from multi-commodity flow formulations. We identify the underlying graph and generate cutting planes based on cuts in the detected network. Our implementation adds a separator to the branch-and-cut libraries of Scip and Cplex. We make use of the complemented mixed integer rounding framework but provide a special purpose aggregation heuristic that exploits the network structure. Our separation scheme speeds-up the computation for a large set of mixed integer programs coming from network design problems by a factor two on average. We show that almost 10% of the instances in general testsets contain consistent embedded networks. For these instances the computation time is decreased by 18% on average.  相似文献   

12.
The portfolio optimization problem has attracted researchers from many disciplines to resolve the issue of poor out-of-sample performance due to estimation errors in the expected returns. A practical method for portfolio construction is to use assets’ ordering information, expressed in the form of preferences over the stocks, instead of the exact expected returns. Due to the fact that the ranking itself is often described with uncertainty, we introduce a generic robust ranking model and apply it to portfolio optimization. In this problem, there are n objects whose ranking is in a discrete uncertainty set. We want to find a weight vector that maximizes some generic objective function for the worst realization of the ranking. This robust ranking problem is a mixed integer minimax problem and is very difficult to solve in general. To solve this robust ranking problem, we apply the constraint generation method, where constraints are efficiently generated by solving a network flow problem. For empirical tests, we use post-earnings-announcement drifts to obtain ranking uncertainty sets for the stocks in the DJIA index. We demonstrate that our robust portfolios produce smaller risk compared to their non-robust counterparts.  相似文献   

13.
Dynamic constraint aggregation is an iterative method that was recently introduced to speed up the linear relaxation solution process of set partitioning type problems. This speed up is mostly due to the use, at each iteration, of an aggregated problem defined by aggregating disjoint subsets of constraints from the set partitioning model. This aggregation is updated when needed to ensure the exactness of the overall approach. In this paper, we propose a new version of this method, called the multi-phase dynamic constraint aggregation method, which essentially adds to the original method a partial pricing strategy that involves multiple phases. This strategy helps keeping the size of the aggregated problem as small as possible, yielding a faster average computation time per iteration and fewer iterations. We also establish theoretical results that provide some insights explaining the success of the proposed method. Tests on the linear relaxation of simultaneous bus and driver scheduling problems involving up to 2,000 set partitioning constraints show that the partial pricing strategy speeds up the original method by an average factor of 4.5.  相似文献   

14.
A method is proposed to estimate confidence intervals for the solution of integer linear programming (ILP) problems where the technological coefficients matrix and the resource vector are made up of random variables whose distribution laws are unknown and only a sample of their values is available. This method, based on the theory of order statistics, only requires knowledge of the solution of the relaxed integer linear programming (RILP) problems which correspond to the sampled random parameters. The confidence intervals obtained in this way have proved to be more accurate than those estimated by the current methods which use the integer solutions of the sampled ILP problems.This research was partially supported by the Italian National Research Council contract no. 82.001 14.93 (P.F. Trasporti).  相似文献   

15.
Constraint integer programming (CIP) is a novel paradigm which integrates constraint programming (CP), mixed integer programming (MIP), and satisfiability (SAT) modeling and solving techniques. In this paper we discuss the software framework and solver SCIP (Solving Constraint Integer Programs), which is free for academic and non-commercial use and can be downloaded in source code. This paper gives an overview of the main design concepts of SCIP and how it can be used to solve constraint integer programs. To illustrate the performance and flexibility of SCIP, we apply it to two different problem classes. First, we consider mixed integer programming and show by computational experiments that SCIP is almost competitive to specialized commercial MIP solvers, even though SCIP supports the more general constraint integer programming paradigm. We develop new ingredients that improve current MIP solving technology. As a second application, we employ SCIP to solve chip design verification problems as they arise in the logic design of integrated circuits. This application goes far beyond traditional MIP solving, as it includes several highly non-linear constraints, which can be handled nicely within the constraint integer programming framework. We show anecdotally how the different solving techniques from MIP, CP, and SAT work together inside SCIP to deal with such constraint classes. Finally, experimental results show that our approach outperforms current state-of-the-art techniques for proving the validity of properties on circuits containing arithmetic.   相似文献   

16.
We develop a new modeling and solution method for stochastic programming problems that include a joint probabilistic constraint in which the multirow random technology matrix is discretely distributed. We binarize the probability distribution of the random variables in such a way that we can extract a threshold partially defined Boolean function (pdBf) representing the probabilistic constraint. We then construct a tight threshold Boolean minorant for the pdBf. Any separating structure of the tight threshold Boolean minorant defines sufficient conditions for the satisfaction of the probabilistic constraint and takes the form of a system of linear constraints. We use the separating structure to derive three new deterministic formulations for the studied stochastic problem, and we derive a set of strengthening valid inequalities. A crucial feature of the new integer formulations is that the number of integer variables does not depend on the number of scenarios used to represent uncertainty. The computational study, based on instances of the stochastic capital rationing problem, shows that the mixed-integer linear programming formulations are orders of magnitude faster to solve than the mixed-integer nonlinear programming formulation. The method integrating the valid inequalities in a branch-and-bound algorithm has the best performance.  相似文献   

17.
In this paper we examine the Uncapacitated Facility Location Problem (UFLP) with a special structure of the objective function coefficients. For each customer the set of potential locations can be partitioned into subsets such that the objective function coefficients in each are identical. This structure exists in many applications, including the Maximum Cover Location Problem. For the problems possessing this structure, we develop a new integer programming formulation that has all the desirable properties of the standard formulation, but with substantially smaller dimensionality, leading to significant improvement in computational times. While our formulation applies to any instance of the UFLP, the reduction in dimensionality depends on the degree to which this special structure is present. This work was supported by grants from NSERC.  相似文献   

18.
We consider the formulation of non-preemptive single machine scheduling problems using time-indexed variables. This approach leads to very large models, but gives better lower bounds than other mixed integer programming formulations. We derive a variety of valid inequalities, and show the role of constraint aggregation and the knapsack problem with generalised upper bound constraints as a way of generating such inequalities. A cutting plane/branch-and-bound algorithm based on these inequalities has been implemented. Computational experience on small problems with 20/30 jobs and various constraints and objective functions is presented.The research of this author was partially supported by JNICT/INVOTAN under grant No. 30/A/85/PO and by the PAC, contract No. 87/92-106, for computation.  相似文献   

19.
We present two approaches for 0–1 program model tightening. They are based on increasing and reducing knapsack constraint coefficients, respectively. Both approaches make use of information from cover structures implied by the original constraint system. The formulations that they provide are 0–1 equivalent and as tight as the original model. We also present some characterizations for the new formulations to be tighter than the original model.  相似文献   

20.
The purpose of this paper is to present sufficient conditions for the existence of optimal solutions to integer and mixed-integer programming problems in the absence of upper bounds on the integer variables. It is shown that (in addition to feasibility and boundedness of the objective function) (1) in the pure integer case a sufficient condition is that all of the constraints (other than non-negativity and integrality of the variables) beequalities, and (2) that in the mixed-integer caserationality of the constraint coefficients is sufficient. Some computational implications of these results are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号