首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diffusion equation for the configurational distribution function of Hookean dumbbell suspensions with the hydrodynamic interaction (HI) was solved, in terms of Galerkin’s method, in steady state shear flow; and viscosity,first and second normal-stress coefficients and molecular stretching were then calculated. The results indicate that the HI included in a microscopic model of molecules gives rise to a significant effect on the macroscopic properties of Hookean dumbbell suspensions. For example, the viscosity and the first normal stress coefficient, decreasing as shear rate increases, are no longer constant; the second normal-stress coefficient, being negative with small absolute value and shear-rate dependent, is no longer zero; and an additional stretching of dumbbells is yielded by the HI. The viscosity function and the first normal-stress coefficient calculated from this method are in agreement with those predicted from the self-consistent average method qualitatively, while the negative second normal-stress coefficient from the former seems to be more reasonable than the positive one from the latter.  相似文献   

2.
The Gaussian closure method and Brownian dynamics simulations have been used to calculate the shear material properties of a dilute solution of Hookean dumbbells with internal viscosity. Results for the zero-shear-rate material properties and small amplitude oscillatory shear material properties have been found analytically, and numerical results for the steady state shear material properties are also presented. Two interpretations of the stress tensor are investigated and results are compared. Brownian dynamics simulations are used to obtain material properties of the Hookean dumbbell with internal viscosity without approximations. These simulation results are compared with the perturbation solution of Booij and van Wiechen as well as with a new Gaussian closure solution. Also presented are the contracted distribution functions as derived from the Gaussian closure method and from Brownian dynamics simulations.  相似文献   

3.
Numerical simulation is used to investigate the flow of polymer solutions around a periodic, linear array of cylinders by using three constitutive equations derived from kinetic theory of dilute polymer solutions: the Giesekus model; the finitely extensible, nonlinear elastic dumbbell model with Peterlin's approximation (FENE-P); and the FENE dumbbell model of Chilcott–Rallison (CR). In the Giesekus model, intramolecular forces are described by a Hookean spring, whereas a finitely extensible spring whose modulus is given by the Warner approximation is used in both the FENE-P and CR models. Hydro dynamic drag on the beads is taken to be anisotropic for the Giesekus model and isotropic for the other two models. The CR and FENE-P models differ subtly in their approximate treatment of the nonlinear force law. The three models exhibit very similar rheological behavior in viscometric flow and steady elongational flow, with the notable exception that the viscosity for the CR model is shear-rate independent. Finite element simulations are performed by using two different formulations: the elastic-viscous split-stress gradient (EVSS-G) method and a new variant of this formulation, the discrete EVSS-G (DEVSS-G) formulation, in which the elliptic stabilization term is added only to the discrete version of the momentum equation, and the constitutive equation is solved directly in terms of the polymer contribution to the stress tensor. Calculations are performed for all models up to a Weissenberg number We, where the configuration tensor 〈QQ〉 loses positive definiteness. However, by locally refining the mesh in the gap region, the positive definiteness of 〈QQ〉 is recovered. The flow and stress fields predicted by the three constitutive equations are qualitatively similar. A `birefringent strand' of highly stretched polymer molecules, which appears to emanate from the rear stagnation point in the cylinder, strengthens as We is increased. Not surprisingly, the molecular extension computed for the Giesekus model is considerably larger than that of the two FENE spring models. The drag force on the cylinders differs for the FENE-P and CR models, because of the difference in the shear-thinning viscosity resulting from the different approximations used in these models.  相似文献   

4.
A modification of the Giesekus constitutive equation is derived by incorporating (approximately, via the Peterlin approximation) the finite extensibility of polymer molecules into dumbbell kinetic theory along with the anisotropic hydrodynamic drag suggested by Giesekus. The constitutive equation that is obtained retains much of the simplicity of Giesekus' constitutive equation, but it involves terms that are cubic in the stress as well as those that are quadratic. It is shown that the constitutive equation quantitatively describes the steady elongational viscosity of the IUPAC polymer melt A (including the strain softening of the melt), but it cannot describe the elongational and shear viscosities simultaneously. It is also shown that the constitutive equation satisfies the Lodge-Meissner relation for shear strains less than unity.  相似文献   

5.
In order to understand the role of viscoelasticity on draw resonance in the isothermal film casting process, a steady state analysis and a linear stability analysis for three-dimensional flow disturbances have been conducted. The constitutive equation used is a modified convected Maxwell model, with shear-rate dependent viscosity and fluid characteristic time. The numerical results indicate that the flow is stable below a lower critical draw ratio and above an upper critical draw ratio. Shear thinning in viscosity reduces the lower critical draw ratio and somewhat increases the upper critical draw ratio—thereby enlarging the region of instability. Slower shear reduction in fluid characteristic time dramatically decreases the upper critical draw ratio but has no significant effect on the lower critical draw ratio; therefore, fluids with higher characteristic time are more stable.  相似文献   

6.
Summary In this communication we consider the hydrodynamic interaction problem in dumbbell kinetic theory using the traditional Langevin analysis. The pre-averaged Oseen tensor is avoided in the formulation. It is shown that the behaviour of the dumbbell is qualitatively different from that predicted by models employing the pre-averaged Oseen tensor; the most important result is that the predicted non-Newtonian viscosity in a steady shearing flow now occurs at the experimentally observed order of magnitude of shear rate. This contrasts with the constant viscosity predicted by the pre-averaged calculation.
Zusammenfassung In dieser Veröffentlichung wird das Problem der hydrodynamischen Wechselwirkung in der kinetischen Theorie der Hanteln mit der traditionellen Langevin-Analyse behandelt. Bei dieser Methode wird die Vorab-Mittelung des Oseen-Tensors vermieden. Es wird gezeigt, daß das Verhalten der Hanteln von demjenigen qualitativ verschieden ist, das durch das Modell des vorab gemittelten Oseen-Tensors vorausgesagt wird. Das wichtigste Ergebnis ist, daß die so bestimmte nicht-newtonische Viskosität für die stationäre Scherströmung jetzt größenordnungsmäßig mit der experimentell beobachteten übereinstimmt, im Gegensatz zu der bei der Vorab-Mittelung erhaltenen konstanten Viskosität.


With 7 figures  相似文献   

7.
An alternative formalism to the dumbbell kinetic problem is proposed which is believed to be more fundamental than the classical Liouville one. The new formulation provides a logical approach to non-conservative systems and systems with varying frictional coefficients. A non-linear dumbbell with internal viscosity and varying frictional factor for the beads is examined. It is proved that the centre of gravity of the dumbbell must move affinely with the solvent continuum. A useful class of approximation is suggested to reduce the constitutive equation to an explicit form. The response of the model is computed for a number of flow fields. For shear flows, the introduction of the internal viscosity results in a shear-thinning phenomenon. The onset of non-Newtonian behaviour occurs at the correct order of magnitude of the dimensionless shear rate. Also, a negative second normal stress difference is found which varies with shear rate. In an oscillatory shear flow, the internal viscosity leads to a finite limiting value of the dynamic viscosity at high frequencies. In elongational flow the effects of the varying frictional coefficient dominate that of the internal viscosity. Interesting phenomena include the presence of a hysteresis loop and the ability of the dumbbell to maintain an extended configuration at moderate elongational rates. Clearly, these are relevant in turbulent drag reduction applications. The model has sufficient merits to deserve more investigation.  相似文献   

8.
We study the stress growth upon the inception of steady shear and steady elongational flow for a nonlinear dumbbell model for flexible macromolecules suspended in a Newtonian fluid. The internal force law is made nonlinear by adding a cubic term to the Hookean force law. The generalization to a nonlinear chainlike bead—spring model is outlined. In order to consider higher concentration effects also the configuration-dependent tensorial mobility is included. We use the mean-field approximation and test this approximation with a Brownian dynamics simulation. The mean-field results for the material functions are compared with experimental results for both flow situations.  相似文献   

9.
A constitutive equation is presented, derived from Lodge's molecular network theory. The equation is of a form similar to the one presented previously by Carreau. The rate of creation of junctions and the probability of loss of junctions depend here also on the second invariant of the rate-of-strain tensor. The dependence, however, is through simple exponential functions, resulting in easy-to-use equations.Material functions are presented for the viscosity, the primary normal stress coefficient, the complex viscosity, the stress relaxation after cessation of steady simple shear, the stress growth after onset of steady simple shear and for elongational flow. The usefulness of the simplified (series truncated) equations is discussed and the model is evaluated with typical viscoelastic data.  相似文献   

10.
The rate-dependent behavior of filled natural rubber (NR) and high damping rubber (HDR) is investigated in compression and shear regimes. In order to describe the viscosity-induced rate-dependent effects, a constitutive model of finite strain viscoelasticity founded on the basis of the multiplicative decomposition of the deformation gradient tensor into elastic and inelastic parts is proposed. The total stress is decomposed into an equilibrium stress and a viscosity-induced overstress by following the concept of the Zener model. To identify the constitutive equation for the viscosity from direct experimental observations, an analytical scheme that ascertains the fundamental relation between the inelastic strain rate and the overstress tensor of the Mandel type by evaluating simple relaxation test results is proposed. Evaluation of the experimental results using the proposed analytical scheme confirms the necessity of considering both the current overstress and the current deformation as variables to describe the evolution of the rate-dependent phenomena. Based on this experimentally based motivation, an evolution equation using power laws is proposed to represent the effects of internal variables on viscosity phenomena. The proposed evolution equation has been incorporated in the finite strain viscoelasticity model in a thermodynamically consistent way. Simulation results for simple relaxation tests, multi-step relaxation tests and monotonic tests at different strain rates using the developed model show an encouraging correlation with the experiments conducted on HDR and NR in both compression and shear regimes. Finally, an approach to extend the proposed evolution equation for rate-dependent cyclic processes is proposed. The simulation results are critically compared with the experiments.  相似文献   

11.
The theories for the prediction of time-dependent, non-linear stresses in viscoelastic materials such as polymers are reviewed, and it is noted that the commonly observed stress non-linearity may be ascribed either, as is usually done, to memory-function non-linearity or, alternatively, to strain-measure non-linearity. To investigate the latter alternative whilst retaining a general memory-function non-linearity, a single-integral constitutive equation of the Bird—Carreau type is employed but with an arbitrary strain measure I in place of the normally employed Finger tensor F. This model includes as special cases a large proportion of the constitutive equations previously employed for predictive purposes and in particular with a linear memory function it is shown to be indistinguishable, with the normally conducted shear experiments, from the successful BKZ model.In the new model the shear component I12 of the strain measure can be found from experimental results obtained in the startup of steady shear flow, without specification or restriction of memory-function non-linearity. The form of I12 found from experiment is quite non-linear in shear a for ¦a¦> 2, and hence differs from the F tensor for which F12 = a. The same form for I12 found for a variety of polymer solutions and a polymer melt and consequently a simple function describing I12 is proposed as a new, material-independent, strain measure.  相似文献   

12.
A continuum constitutive theory of corotational derivative type is developed for the anisotropic viscoelastic fluid–liquid crystalline (LC) polymers. A concept of anisotropic viscoelastic simple fluid is introduced. The stress tensor instead of the velocity gradient tensor D in the classic Leslie–Ericksen theory is described by the first Rivlin–Ericksen tensor A and a spin tensor W measured with respect to a co-rotational coordinate system. A model LCP-H on this theory is proposed and the characteristic unsymmetric behaviour of the shear stress is predicted for LC polymer liquids. Two shear stresses thereby in shear flow of LC polymer liquids lead to internal vortex flow and rotational flow. The conclusion could be of theoretical meaning for the modern liquid crystalline display technology. By using the equation, extrusion–extensional flows of the fluid are studied for fiber spinning of LC polymer melts, the elongational viscosity vs. extension rate with variation of shear rate is given in figures. A considerable increase of elongational viscosity and bifurcation behaviour are observed when the orientational motion of the director vector is considered. The contraction of extrudate of LC polymer melts is caused by the high elongational viscosity. For anisotropic viscoelastic fluids, an important advance has been made in the investigation on the constitutive equation on the basis of which a series of new anisotropic non-Newtonian fluid problems can be addressed. The project supported by the National Natural Science Foundation of China (10372100, 19832050) (Key project). The English text was polished by Yunming Chen.  相似文献   

13.
14.
It is shown that extended irreversible thermodynamics can be used to account for the shear rate and frequency dependences of several material functions like shear viscosity, first and second normal stress coefficients, dynamic viscosity and storage modulus. Comparison with experimental data on steady shearing and small oscillatory shearing flows is performed. A good agreement between the model and experiment is reached in a wide scale of variation of the shear rate and the frequency of oscillations. The relation between the present model which includes quadratic terms in the pressure tensor and the Giesekus model is also examined.  相似文献   

15.
In this paper a constitutive model for rigid-plastic hardening materials based on the Hencky logarithmic strain tensor and its corotational rates is introduced. The distortional hardening is incorporated in the model using a distortional yield function. The flow rule of this model relates the corotational rate of the logarithmic strain to the difference of the Cauchy stress and the back stress tensors employing deformation-induced anisotropy tensor. Based on the Armstrong–Fredrick evolution equation the kinematic hardening constitutive equation of the proposed model expresses the corotational rate of the back stress tensor in terms of the same corotational rate of the logarithmic strain. Using logarithmic, Green–Naghdi and Jaumann corotational rates in the proposed constitutive model, the Cauchy and back stress tensors as well as subsequent yield surfaces are determined for rigid-plastic kinematic, isotropic and distortional hardening materials in the simple shear deformation. The ability of the model to properly represent the sign and magnitude of the normal stress in the simple shear deformation as well as the flattening of yield surface at the loading point and its orientation towards the loading direction are investigated. It is shown that among the different cases of using corotational rates and plastic deformation parameters in the constitutive equations, the results of the model based on the logarithmic rate and accumulated logarithmic strain are in good agreement with anticipated response of the simple shear deformation.  相似文献   

16.
The gist of extended irreversible thermodynamics and generalized hydrodynamics is presented within the context of rheology of complex molecules (e.g., polymers) in this paper. Then, the constitutive equation for stress developed for polyatomic fluids in a previous paper is applied to rheology of polymeric fluids. This constitutive equation is fully consistent with the thermodynamic laws. It is shown that the collision bracket integrals appearing in the constitutive equation can be recast in terms of friction tensors of beads and equilibrium force-force correlation functions if the momentum relaxation is much faster than the configuration relaxation and there exist such relaxation times. The force-force correlation functions reduce to those related to the mean square radius of gyration of the polymer if the Hookean model is taken for forces. By treating the recast collision bracket integrals in the constitutive equation as empirical parameters, we analyze some experimental data on shear rate and elongation rate dependence of polymeric melts and obtain excellent agreement with experiment. We show that the empirical parameters can be related to the zero shear rate viscosity and the ratio of the secondary to the primary normal stress coefficient. Therefore, for the plane Couette flow geometry considered in the paper, the constitutive equation is completely specified by the limiting material functions at zero shear rate and relaxation times.Work supported in part by the Natural Sciences and Engineering Research Council of Canada and Fonds FCAR, Quebec. This paper was presented at the Symposium on Recent Developments in Structured Continua II held at Magog, Quebec, Canada, May 23–25, 1990.  相似文献   

17.
The phase-space kinetic theory for polymeric liquid mixtures is used to obtain an expression for the polymer contribution to the thermal conductivity of a nonflowing, dilute solution of polymers, where the polymer molecules are modeled as Fraenkel dumbbells. This theory takes into account three mechanisms for the energy transport: diffusion of kinetic energy (including the Öttinger-Petrillo term), diffusion of intramolecular energy, and the work done against the intramolecular forces. This paper is an extension of previous developments for the Hookean dumbbell model and the finitely-extensible dumbbell model. A comparison among the dumbbell results suggests that the thermal conductivity increases with chain stiffness. In addition, the zero-shear-rate viscosity and first normal-stress coefficient are also given for the Fraenkel dumbbell model.Dedicated to Prof. John D. Ferry on the occasion of his 85th birthday.  相似文献   

18.
用格子Boltzmann方法研究Burgers方程   总被引:15,自引:0,他引:15  
阎广武 《力学学报》1999,31(2):143-151
提出了用于Burgers方程的格子Boltzmann模型,应用Chapman-Enskog展开和多重尺度技术,通过选择平衡态分布函数的高阶矩,得出了几种精度的Burgers方程,模型中的参数通过分析耗散性质和色散给出。  相似文献   

19.
A selection of kernel functions is given to be used in a new integral constitutive equation proposed by Piau whereby the deviatoric stress is calculated from the integral of the history of the past intrinsic rate of rotation and rate of deformation tensors through a representation theorem. Piau has demonstrated the objectivity of a frame moving with a given particle whose axis are directed along the eigenvectors of the rate of deformation tensor. The use of such a framework provides a new approach in the attempt to reduce the computational difficulties associated with conventional constitutive equations written in co-deformational or co-rotational reference frames.The shear and primary normal-stress material functions and the extensional (elongational) stress growth function are defined for the proposed integral constitutive equation. These material functions are used to calculate the kernel functions using steady state, stress relaxation and stress growth data of Attané in simple shear flow for monodisperse polystyrene solutions. The shear and extensional stress growth data of Meissner for a polyethylene melt are also used to show the flexibility of the rheological model.The material functions are first written in terms of five monotonically decreasing functions of the time lag between the past and the present time. Then kernel functions are chosen such that when substituted in the new integral constitutive equation they yield the functions used to describe the data. A further condition imposed on the normalized kernel functions is that they be decreasing functions of time lag.  相似文献   

20.
Flows through abrupt contractions are dominated by the rapid extension experienced in passing through the contraction. Thus, it is useful to employ a fluid model which considers the extensional viscosity explicitly in its constitutive equation. In this paper, the quasi-Newtonian fluid model, which admits shear thinning and extension thickening of the viscosity depending on the local type of flow as proposed by Schunk and Scriven [P. Schunk, L. Scriven, J, Rheol 34 (1990) 1085], is applied to the numerical simulation of the flow of a dilute polyacrylamide solution through a planar 4 : 1 contraction. In this theory the extra stress tensor does not only depend on the rate of strain tensor but also on the relative rate of rotation of the fluid. The material function – the viscosity function – is allowed to depend on the invariants of these two kinematic tensors yielding a local distinction between extensional, shear or rotation dominated flow. The governing equations are discretized using a finite volume method. Different model parameters are varied and the simulation results are compared with the generalized Newtonian fluid and experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号