首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of Soave–Redlich–Kwong cubic equation of state (SRK EoS) to predict densities and thermodynamic derivative properties such as thermal expansivity, isothermal compressibility, calorific capacity, and Joule–Thompson coefficients, for two gas condensates over a wide range of pressures (up to 110 MPa) was studied. The predictions of the EoS were compared to Monte Carlo simulation data obtained by Lagache et al. [M.H. Lagache, P. Ungerer, A. Boutin, Fluid Phase Equilibr. 220 (2004) 221]. Two completely different alpha functions for the SRK EoS attractive term were used and their respective effects on the predictions of such properties were analyzed. Also, two different forms of the crossed terms of the attractive parameter, aij, and three expressions of the crossed terms of the repulsive parameter, bij, were combined in different ways, and predictions were carried out. Little sensitivity of the properties on the chosen alpha function, except for the calorific capacities, was found in the systems studied. The most commonly used combination rules to model phase behavior of reservoir fluids, i.e. geometric and arithmetic forms of aij and bij, respectively, predicted very deficient results for these fluids at extreme conditions, specially for density calculations.  相似文献   

2.
We introduce here a work package for a National Natural Science Foundation of China Major Project. We propose to develop computational methodology starting from the theory of electronic excitation processes to predicting the opto-electronic property for organic materials, in close collaborations with experiments. Through developing methods for the electron dynamics, considering superexchange electronic couplings, spin-orbit coupling elements between excited states, electron-phonon relaxation, intermolecular Coulomb and exchange terms we combine the statistical physics approaches including dynamic Monte Carlo, Boltzmann transport equation and Boltzmann statistics to predict the macroscopic properties of opto-electronic materials such as light-emitting efficiency, charge mobility, and exciton diffusion length. Experimental synthesis and characterization of D-A type ambipolar transport material as well as novel carbon based material will provide a test ground for the verification of theory.  相似文献   

3.
Owing to certain advantages, the equation-of-state (EOS) approach is preferable to mixed models for VLE predictions in hydrocarbon processing at high pressures. However, the EOS approach leads to convergence problems, typically yielding what are referred to as trivial solutions for single models. Despite the use of this approach for over three decades, not much attention has been given to this aspect until recently. An attempt is made here to analyse the problem systematically and to suggest a solution. A procedure, providing initial estimates of pressure and temperature for VLE predictions, is also a long-felt need. Correlations are suggested for this purpose. Finally, an algorithm is proposed which can resolve trivial solutions and other convergence problems.  相似文献   

4.
The important known regularities and thermodynamic properties of liquid mercury have been studied based on the average potential energy. Recognised regularities, the linearity of Zeno contour, bulk modulus and secant bulk modulus as functions of temperature, isochors of pressure versus temperature and near linearity of the inverse isobaric expansion coefficient have been investigated, all evaluated using the Goharshadi–Morsali–Abbaspour equation of state. The validity of the equation of state in predicting thermophysical properties is confirmed by a statistical parameter, absolute average deviation, with a maximum value of 0.41, showing excellent agreement with the experiment at temperatures between 293.15 and 323.15?K from low to high pressures.  相似文献   

5.
《Fluid Phase Equilibria》1987,38(3):201-216
Based on theoretical results for a system of hard spheres with dipoles, a new equation of state is applied to the correlation of thermodynamic properties for four fluids: argon, ammonia, water and acetonitrile. The reference system has the same dependence on density as that given by the Carnahan-Starling equation, but the coefficients are now functions of temperature through the reduced dipole moment. These coefficients are chosen to match the Padé approximant developed by Rushbrooke, Stell and Hoye for the Helmholtz energy of dipolar hard spheres. The reference system proposed here shows a phase transition for reduced dipole moments greater than 1.9. A simple, empirical perturbation term is added to the reference system to account for induction and dispersion forces. For polar fluids, the equation gives results significantly better than those obtained from conventional cubic equations of state, when using the same limited experimental data for determining equation-of-state parameters.  相似文献   

6.
A modified excess Gibbs energy model which is based on the local composition concept and assigns a single energy parameter per pair of components, is incorporated into the GE—EoS thermodynamic formalism for vapor-liquid equilibrium (VLE) calculations of simple and complex refrigerant mixtures. One temperature set of data close to 273 K is used to obtain the model's parameters, which are used to extrapolate the VLE at other temperatures and pressures. A one-parameter form of the model based on the Wong-Sandler mixing rule is presented for several simple systems. The physical significance of the model's energy parameter is connected to the preference of the mixture for like to unlike interactions. The model is applied for VLE predictions of the ternary system R14-R23-R13, and the results are compared to calculations using the 3PWS model [H. Orbey. S.I. Sandler, Ind. Eng. Chem. Res. 34 (1995) 2520–2525] and the van der Waals mixing rule. Modelling of a few complex systems with only three data points given at each temperature is shown with a two parameter version of our model on the basis of the Huron-Vidal mixing rule.  相似文献   

7.
In this work, we used a statistical associating fluid theory to analyze two important thermodynamic regularities for some associating fluids, including water, methanol and ethanol. The studied regularities included: (i) the common bulk modulus point on the isotherms of the reduced bulk modulus versus reduced density, (ii) near linearity of the reduced isothermal bulk modulus as a function of reduced pressure. In this work, we also reported the influence of the molecular size and interaction strength on the bulk modulus point.  相似文献   

8.
The group contribution equation of state (GC-EOS) was applied to predict the phase behavior of binary systems of ionic liquids of the homologous families 1-alkyl-3-methylimidazolium hexafluorophosphate and tetrafluoroborate with CO2. Pure group parameters for the new ionic liquid functional groups [-mim][PF6] and [-mim][BF4] and interaction parameters between these groups and the paraffin (CH3, CH2) and CO2 groups were estimated. The GC-EOS extended with the new parameters was applied to predict high-pressure phase equilibria in binary mixtures of the ionic liquids [emim][PF6], [bmim][PF6], [hmim][PF6], [bmim][BF4], [hmim][BF4], and [omim][BF4] with CO2. The agreement between experimental and predicted bubble point data for the ionic liquids was excellent for pressures up to 20 MPa, and even for pressures up to about 100 MPa, the agreement was good. The results show the capability of the GC-EOS to describe phase equilibria of systems consisting of ionic liquids.  相似文献   

9.
The Peneloux–Rauzy–Freze (PRF) method of improving volumetric predictions by introducing the volume shift into the equation of state, is applied to the Esmaeilzadeh–Roshanfekr equation of state (ER-EOS). The ER-EOS is a new three parameter equation of state that was developed in 2006 aiming to be applied to reservoir fluids. First, this equation of state was developed for pure hydrocarbons and then was extended to mixtures by using mixing rules [M. Bonyadi, F. Esmaeilzadeh, Fluid Phase Equilib. 260 (2007) 326–334]. The modified ER-EOS (mER-EOS) is expected to improve volumetric predictions of gas condensate by applying volume shift for heavy end(s). In this study, three gas condensate fluid samples taken from three wells in a real field in Iran, referred here as SA1, SA4 and SA8, as well as two samples from literature have been used to check the validity of the modified ER-EOS in calculating the PVT properties of gas condensate mixtures. Some experiments such as constant composition expansion (CCE), constant volume depletion (CVD) and dew point pressures are carried out on these samples. Relative volume and condensate drop-out in CCE and CVD tests were predicted by ER-EOS, mER-EOS, PR-EOS and SRK-EOS [D.Y. Peng, D.B. Robinson, Ind. Eng. Chem. Fundam. 15 (1), (1976) 59–64; G. Soave, Chem. Eng. Sci. 27 (1972) 1197–1203]. Comparison results between experimental and calculated data indicate that the mER-EOS has smaller error than the ER-EOS, PR-EOS and SRK-EOS. By this modification, the total average absolute deviations of the predicted liquid saturation from CVD experiments and relative volume from CCE experiments are 13.17% and 0.99%, respectively.  相似文献   

10.
Tetrahydrofuran (THF) is one of the most widely used analogues for gas hydrates as well as a commonly used additive for reducing the formation pressure of a given hydrate process. Hydrates are also currently being investigated as storage materials for hydrogen as well as materials for hydrogen separations. Here we present a thermodynamic model, based on the CSMGem framework, that accurately captures the phase behavior of various hydrates containing THF and hydrogen. The model uses previously regressed parameters for components other than THF and H2, and can reproduce hydrate formation conditions for a number of hydrates containing THF and/or hydrogen (simple THF, THF + CH4, THF + N2, THF + CO2, THF + H2, CH4 + H2, C2H6 + H2 and C3H8 + H2). The incorporation of THF and H2 within this model framework will serve as a valuable tool for hydrate scenarios involving either of these components.  相似文献   

11.
A model describing the thermodynamic behaviour of polymer solutions is derived which explicitly accounts for the flexibility of the polymer chains. Based on computer simulations on various lattices it is shown that the flexibility of a polymer chain can be modelled by distinguishing different polymer conformations. Here each conformation is characterized by its corresponding number of external contact sites. The equilibrium between the different conformations is then solved for any polymer concentration and any combination of interaction energies utilizing a modified Staverman equation. The model predictions are in good agreement with the results of the computer simulations which were performed using the simple-sampling and the slithering-snake algorithm. Since the knowledge of the distribution of the conformations of a single polymer chain on an empty lattice is a prerequisite to perform the model calculations, Poisson distribution functions are fitted to the results of the corresponding computer simulations. The generalization of these distribution functions not only facilitates the use of the new model but also allows to model polymers of varying chain stiffness.  相似文献   

12.
13.
This paper aims to accurately describe the thermodynamic properties of Cyclopropane with a molecular based BACKONE equation of state. The parameters of the BACKONE equation of state found by fitting to experimental vapor pressures and liquid densities are the characteristic temperature T 0, characteristic density ρ0, anisotropy factor α, and reduced quadrupolar moment Q*2. The values of these parameters are 393.9583 K, 6.076139 mol/L, 1.295445, and 0.699483, respectively. The average absolute deviation between experimental values and those derived from BACKONE EOS is 0.29% for vapor pressures, 0.75% for saturated liquid densities. The prediction power of the BACKONE equation of state are investigated. It is shown that the uncertainties of values derived from the BACKONE equation of state are within 0.90% for isobaric densities in the liquid phase and 2.0% for enthalpy of evaporation.  相似文献   

14.
The temperature dependences of the vapor pressures of oxacyclobutan-2-one and oxacyclopentan-2-one were measured by the transpiration method. The entropies of gaseous oxacycloalkan-2-ones (lactones) were determined based on the experimental values of entropy in the condensed state, vapor pressure, and enthalpy of vaporization. Thermodynamic functions of lactones with a ring size of n = 4—8 (number of atoms in the ring) were determined by quantum chemistry and statistical physics methods in the ideal gas approximation taking into account the molar fractions of all conformers and optical isomers in the temperature range from 298.15 to 1500 K. The enthalpies of ring strain were calculated based on the enthalpies of formation.  相似文献   

15.
Although of extreme importance for evaluating the effective therapeutic action, aqueous solubility data involving drug-like molecules are scarce. Thermodynamic models can be used to estimate these solubilities, and different models, namely activity coefficient models, have been applied for that purpose. Still, these frequently cannot describe with accuracy broad temperature and pressure ranges, various solvent compositions or multifunctional molecules.  相似文献   

16.
Sorption and dilation isotherms are reported for a series of gases (N2, O2, CO2), hydrocarbon vapors (CH4, C2H6, C3H8), and their fluorocarbon analogs (CF4, C2F6, C3F8) in poly(dimethylsiloxane) (PDMS) at 35°C and pressures up to 27 atmospheres. The hydrocarbons are significantly more soluble in hydrocarbon-based PDMS than their fluorocarbon analogs. Infinite dilution partial molar volumes of both hydrocarbons and fluorocarbons in PDMS were similar to their partial molar volumes in other hydrocarbon polymers and in organic liquids. Except for C2H6 and C3H8, partial molar volume was independent of penetrant concentration. For these penetrants, partial molar volume increased with increasing concentration. The Sanchez–Lacombe equation of state is used to predict gas solubility and polymer dilation. If the Sanchez–Lacombe model is used with no adjustable parameters, solubility is always overpredicted. The extent of overprediction is more substantial for fluorocarbon penetrants than for hydrocarbons. Very good fits of the model to the experimental sorption and dilation data are obtained when the mixture interaction parameter is treated as an adjustable parameter. For the hydrocarbons, the interaction parameter is approximately 0.96, and for the fluorocarbons, it is approximately 0.87. These values suggest less favorable interactions between the hydrocarbon-based PDMS matrix and the fluorocarbon penetrants than between PDMS and hydrocarbons. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3011–3026, 1999  相似文献   

17.
Thermodynamic functions (enthalpy, entropy, free energy, and heat capacity) of azacycloalkan-2-ones with ring sizes n = 4–8 in the ideal gas state are calculated by means of quantum chemistry and statistical physics, using an anharmonic approximation in the range of 298–1500 K with allowance for all known conformers and optical isomers. Equilibrium structures and total energies of lactams are calculated using the B3LYP/6-311++G(3df, 3pd), B3LYP/aug-cc-pVQZ, and MP2/6-311++G(3df, 3pd) methods, and the anharmonic frequencies of the fundamental vibrations of all the investigated structures were found via B3LYP/6-311++G(3df, 3pd).  相似文献   

18.
19.
Thermodynamic interpretation of three-parametric equation connecting conversion degree (a) with temperature (T) was presented. One proved that thermal decomposition process of chemically defined compounds (CuSO4·5H2O, PhN(CH3)2·HCl) in dynamic conditions for 5 heating rates may be described by transformed three-parametric equation including equilibrium conversion degree. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
《Fluid Phase Equilibria》2006,245(2):185-192
A general expression of the canonical partition function for mixture fluids in terms of solvation free energy is presented. Following the same approach as set forth in generalized van der Waals theory, we show that the physical assumptions made in existing thermodynamic models from the perspective of molecular solvation can be prevailed. For example, the temperature dependence on the coordination number, i.e. the number of solvent molecules surrounding the solute, has an impact not only on the temperature dependence of the solvation free energy but on the non-linear solvent reaction field response as well. More importantly, the new formulation provides a unified scheme for deriving the commonly used equations of state (EOS) and newly developed COSMO-type liquid activity coefficient models. We show that from this new formulation it is possible to develop a new class of thermodynamic models that behave like existing EOS and liquid models in the low and high-density limits, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号