首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In a bio-inspired approach, polyamine-mediated mineralization of ZnO was explored to develop an environmentally benign methodology for synthesizing Ag/AgCl/ZnO nanostructures. The assembling properties displayed by the polyamines to create composite structures was utilized to have the nanocomponents effectively interact with each other in a way that is desirable for the application envisaged. The polyamines, which act as a mineralizing agent for ZnO nanoparticles, also facilitate the formation of Ag/AgCl within ZnO under ambient conditions. Thus synthesized Ag/AgCl/ZnO nanostructures represent a multi-heterojunction system in which the nanocomponents lead in a synergistic way to enhancement in the photocatalytic activity under visible-light irradiation.  相似文献   

2.
In a bio‐inspired approach, polyamine‐mediated mineralization of ZnO was explored to develop an environmentally benign methodology for synthesizing Ag/AgCl/ZnO nanostructures. The assembling properties displayed by the polyamines to create composite structures was utilized to have the nanocomponents effectively interact with each other in a way that is desirable for the application envisaged. The polyamines, which act as a mineralizing agent for ZnO nanoparticles, also facilitate the formation of Ag/AgCl within ZnO under ambient conditions. Thus synthesized Ag/AgCl/ZnO nanostructures represent a multi‐heterojunction system in which the nanocomponents lead in a synergistic way to enhancement in the photocatalytic activity under visible‐light irradiation.  相似文献   

3.
Herein, we report a bottom-up, mineralization strategy, which borrows key principles from biomineralization processes, to synthesize nanostructured materials. A long-chain polyamine simultaneously mineralizes and assembles ZnO nanoparticles directly from water-soluble zinc salts under sustainable synthesis conditions. These thus-generated oriented structures undergo interesting morphogenesis that is controlled by changing the ratio of polyamine/Zn(2+) ions. As the ratio increases, the morphology changes from a spherical shape to oval-, dumbbell-, and finally hexagonal-rod-shaped structures that contain unique hollow rod structures. Using XPS, XRD, FT-IR, Raman spectroscopy, DLS, and confocal fluorescence microscopic analysis, we elucidate the mechanism of structural evolution; this mechanism involves the initial formation of a zinc/amine complex that is furnished with polyamine chains. These chains facilitate the condensation process to form ZnO nanoparticles and their assembly in aqueous medium at neutral pH. Further, the presence of defects in the thus-morphogenized ZnO structures leads to blue luminescence and efficient photoinduced activity, assisted by the surface-hole-trapping effect of polyamines.  相似文献   

4.
ZnO nanoparticles with spherical morphology and narrow size distribution were obtained by calcination of Zn(OH)2 nanoparticles, which were prepared in a polyethylene glycol mono-4-nonylphenyl ether (NP-5)/cyclohexane reverse micellar system and incorporated into polyurea (PUA) via an in situ polymerization of hexamethylene diisocyanate (HDI). The resulting ZnO nanoparticles demonstrated a near-UV emission and a green emission, the intensity ratio of which depended on calcination conditions. For the nanoparticles studied, the calcination atmosphere influenced remarkably the photoluminescence properties such as intensity ratio of the near-UV emission to green emission, rather than the size, morphology, and crystallinity of the ZnO nanoparticles. The green emission decreased by calcination in O2 flow but increased by calcination in N2 flow, as compared with the case calcined in air flow. This finding suggests that the green emission is enhanced with the increase of the number of oxygen vacancies of the ZnO nanoparticles and thus the photoluminescence properties of the nanoparticles were successfully controlled by the calcination condition, without changing the size and morphology.  相似文献   

5.
纳米ZnO的制备及其光学性质的研究   总被引:1,自引:0,他引:1  
采用均匀沉淀法,以尿素与硝酸锌反应制备纳米ZnO,通过TG-DTA、XRD、IR及TEM等手段对纳米粒子及中间体进行了表征,结果表明制得的纳米粒子粒度均匀,粒径分布窄。对纳米ZnO的发光特性研究表明,随焙烧温度升高,粒度的增大,可见绿色发射增强。同时对纳米ZnO与普通ZnO的发光性质进行了比较研究,指出纳米ZnO的绿色发光带有蓝移现象,这是由于纳米ZnO的量子尺寸效应引起的。BET测试表明,纳米ZnO的比表面为171.2m^2/g,有利于作催化剂。  相似文献   

6.
Metal oxide nanoparticles are used in a wide range of commercial products, leading to an increased interest in the behavior of these materials in the aquatic environment. The current study focuses on the stability of some of the smallest ZnO nanomaterials, 4 ± 1 nm in diameter nanoparticles, in aqueous solutions as a function of pH and ionic strength as well as upon the adsorption of humic acid. Measurements of nanoparticle aggregation due to attractive particle-particle interactions show that ionic strength, pH, and adsorption of humic acid affect the aggregation of ZnO nanoparticles in aqueous solutions, which are consistent with the trends expected from Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Measurements of nanoparticle dissolution at both low and high pH show that zinc ions can be released into the aqueous phase and that humic acid under certain, but not all, conditions can increase Zn(2+)(aq) concentrations. Comparison of the dissolution of ZnO nanoparticles of different nanoparticle diameters, including those near 15 and 240 nm, shows that the smallest nanoparticles dissolve more readily. Although qualitatively this enhancement in dissolution can be predicted by classical thermodynamics, quantitatively it does not describe the dissolution behavior very well.  相似文献   

7.
Summary: In this paper, PEDOT/PSS‐ZnO coaxial nanocables with diverse inner core sizes are prepared by a new and facile method that involves two‐steps: the synthesis of ZnO nanoparticles through a sol‐gel process, followed by dewetting‐controlled self‐assembly of the nanoparticles and charged polymers to generate a cable‐like nanostructure with the aid of a vacuum. The nanocables have an outer diameter of ca. 100 nm with a polycrystalline ZnO inner core of 7–25 nm in diameter. The length and morphology of the nanocables are determined by external vacuum conditions as well as the ZnO concentration in the composite. A photoluminescence study shows an enhanced green light emission arising from ZnO with a size‐dependence feature.

TEM image of a PEDOT/PSS‐ZnO nanocable at high magnification.  相似文献   


8.
ZnO nanoparticles are synthesized using a new bio-friendly method. The experimental conditions are very mild: aqueous solution at near-neutral pH and 37 degrees C. The as-obtained nanoparticles show the stable wurtzite structure without the need of annealing. The two reagents used are aqueous solutions of zinc nitrate and buffer tris(hydroxymethyl)aminomethane. This is a standard nontoxic buffer and inert to a wide variety of chemicals and biomolecules, therefore extremely satisfactory for biochemical reactions. Furthermore, this is a polydentade ligand which adsorbs strongly on one or more surfaces of ZnO inhibiting its crystal growth and yielding nearly spherical ZnO nanoparticles. Our objective is to use the crystallization method described here for further incorporation of biomolecules as additives in the reaction solution, aiming at the formation of ZnO with new physical properties.  相似文献   

9.
In the pursuit of making the nanoscale-research greener, the utilization of the reductive potency of a common byproduct of food processing industry i.e. orange peel is reported here to prepare biopolymer-templated "green" silver nanoparticles. Aqueous extract of orange peel at basic pH was exploited to prepare starch supported nanoparticles under ambient conditions. The compositional abundance of pectins, flavonoids, ascorbic acid, sugars, carotenoids and myriad other flavones may be envisaged for the effective reductive potential of orange peel to generate silver nanoparticles. The nanoparticles were distributed within a narrow size spectrum of (3-12 nm) with characteristic Bragg's reflection planes of fcc structure, and surface plasmon resonance peak at 404 nm. Anti-lipid peroxidation assay using goat liver homogenate and DPPH scavenging test established the anti-oxidant potency of the silver nanoparticles. Their synergy with rifampicin against Bacillus subtilis MTCC 736 and cytocompatibility with the human leukemic monocytic cell line, THP-1 were also investigated. Thus, the present work deals with the preparation of starch assisted anti-microbial, cytocompatible and free radical scavenging "green" silver nanoparticles.  相似文献   

10.
ZnO nanoparticles embedded into SiO(2) by an ex situ method were shown to result in stable green emission with a peak at 510 nm compared to the normal peak at 495 nm from micron-sized ZnO powders. Green emission from ZnO nanoparticles was completely suppressed when they were embedded in SiO2 doped with Eu3+. Instead, the f-f emissions from Eu3+ were enhanced 5-10 times by energy transfer from the embedded ZnO nanoparticles to Eu3+. The Eu3+ luminescence increased as the Eu3+ concentration increased from 1 vs 5 mole % (for 10 mole % ZnO). In addition, the intensity increased as the embedded ZnO nanoparticles concentration increased up to 10 mole % (for 5 mole % Eu3+). The effects of phonon mediated energy transfer, quenching by activator interactions between Eu3+ ions, and energy back-transfer from Eu3+ ions to ZnO nanoparticles were discussed.  相似文献   

11.
An extremely efficient heterogeneous protocol is reported for the one-pot, three-component synthesis of a series of dihydropyrimidinones (DHPMs) in the presence of ZnO nanoparticles in water as a green solvent. The ZnO nanoparticles exhibited excellent catalytic activity and the proposed methodology is capable of providing the desired products in good yields (65–94%) within short reaction times. After the reaction course, ZnO nanoparticles can be recycled and reused without any apparent loss of activity, which makes this ecofriendly process cost-effective.  相似文献   

12.
Activated carbon from lemon wood (AC) and ZnO nanoparticles loaded on activated carbon (ZnO‐NP‐AC) were prepared and their efficiency for effective acid yellow 199 (AY 199) removal under various operational conditions was investigated. The dependence of removal efficiency on variables such as AY 199 concentration, amount of adsorbent and contact time was optimized using response surface methodology and Design‐Expert. ZnO nanoparticles and ZnO‐NP‐AC were studied using various techniques such as scanning electron microscopy, X‐ray diffraction and energy‐dispersive X‐ray analysis. The optimum pH was studied using one‐at‐a‐time method to achieve maximum dye removal percentage. Small amounts of the proposed adsorbents (0.025 and 0.025 g) were sufficient for successful removal of AY 199 in short times (4.0 and 4.0 min) with high adsorption capacity (85.51 and 116.29 mg g?1 for AC and ZnO‐NPs‐AC, respectively). Fitting the empirical equilibrium data to several conventional isotherm models at optimum conditions indicated the appropriateness of the Langmuir model with high correlation coefficient (0.999 and 0.978 for AC and ZnO‐NPs‐AC, respectively) for representation and explanation of experimental data. Kinetics evaluation of experiments at various time intervals revealed that adsorption processes can be well predicted and fitted by pseudo‐second‐order and Elovich models. This study revealed that the combination of ZnO nanoparticles and AC following simple loading led to significant improvement in the removal process in short adsorption time which was enhanced by mixing the media via sonication.  相似文献   

13.
In this work, we investigated the influence of annealing on the crystallinity, microstructures, and photoluminescence (PL) properties of ZnO nanoparticles prepared by sol–gel method. The annealing was carried out both in air and vacuum. X-ray powder diffraction, scanning electron microscopy, and ultraviolet–visible spectroscopy were used to characterize the crystal structures, diameter, surface morphology, and PL properties of ZnO nanoparticles. It has been found that both the as-grown and annealed ZnO nanoparticles had a hexagonal wurtzite crystal structure, and their average diameter and crystallinity increased with the anneal time and temperature. Pure blue-emitting behavior was observed in all samples. The emission intensity of ZnO nanoparticles was found to be enhanced after annealing, but it was highly dependent on the annealing conditions. Optimal annealing conditions both in air and vacuum were obtained for achieving maximum emission intensity in the ZnO nanoparticles. The dependence of PL properties of the ZnO nanoparticles on the annealing conditions was discussed.  相似文献   

14.
Attachment-driven morphology evolvement of rectangular ZnO nanowires   总被引:1,自引:0,他引:1  
The rectangular cross-sectional ZnO nanowires were synthesized in a solution method. An attachment-driven growth mechanism was proposed for the morphology evolvement of ZnO nanocrystals from nanoparticles to nanoplates and eventually to nanowires. Due to the pileup attachment of the nanoplates to recrystallize into nanowires, unique one-dimensional (1D) ZnO nanowires with the rectangular cross section were obtained, which is different from those nanowires in the previous reports. It is the first time the evidence that "oriented attachment" can occur not only for nanoparticles but also for nanoplates was obtained, suggesting that "oriented attachment" is an intrinsic behavior for nanosized materials. According to the growth model proposed based on the direct TEM observations, ZnO nanocrystals can be easily controlled as nanoparticles, nanoplates, or nanowires by tuning the synthetic parameters.  相似文献   

15.
碳纳米管/ZnO纳米复合体的制备和表征   总被引:3,自引:0,他引:3  
通过将不同直径的ZnO纳米颗粒与碳纳米管连接制备了碳纳米管/ZnO纳米复合体. 将团聚的ZnO纳米颗粒分散并用表面活性剂CTAB使纳米颗粒带正电. 化学氧化碳纳米管使其带负电. ZnO/CTAB微团通过碳管表面羧基与CTAB的静电作用与碳纳米管连接形成纳米复合体. 研究了复合体形成的不同实验条件, 表征了碳纳米管/ZnO纳米复合体的结构并研究了纳米复合体的光学特性. 研究表明, 与碳纳米管连接的ZnO纳米颗粒是互不连接的并保持量子点的特性. 光致发光研究表明ZnO纳米颗粒的激发在纳米复合体中有淬灭.  相似文献   

16.
The nanopowders of Mg-Al carbonate layered double hydroxides (MgAl-LDH) were prepared via coprecipitation process. ZnO nanoparticles were homogeneously coated on the ceramic MgAl-LDH surface. After calcination at 500 ℃ for 4 h, X-ray diffraction and scanning electron microscopy were employed to investigate the crystal structure and morphology, respectively. It was demonstrated that ZnO nanoparticles were successfully prepared on ceramic MgAl-LDH support. The obtained nano-ZnO photocatalyst showed a high pho-tocatalytic degradation of malachite green. The enhanced photocatalytic property can be attributed to both high photocatalytic activity of ZnO and good adsorption behavior of ceramic MgAl-LDH, in which the aky structure of MgAl-LDH plays an important role.  相似文献   

17.
Advanced innovations for combating variants of aggressive breast cancer and overcoming drug resistance are desired. In cancer treatment, ZnO nanoparticles (NPs) have the capacity to specifically and compellingly activate apoptosis of cancer cells. There is also a pressing need to develop innovative anti-cancer therapeutics, and recent research suggests that ZnO nanoparticles hold great potential. Here, the in vitro chemical effectiveness of ZnO NPs has been tested. Zinc oxide (ZnO) nanoparticles were synthesized using Citrullus colocynthis (L.) Schrad by green methods approach. The generated ZnO was observed to have a hexagonal wurtzite crystal arrangement. The generated nanomaterials were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-visible spectroscopy. The crystallinity of ZnO was reported to be in the range 50–60 nm. The NPs morphology showed a strong absorbance at 374 nm with an estimated gap band of 3.20 eV to 3.32 eV. Microscopy analysis proved the morphology and distribution of the generated nanoparticles to be around 50 nm, with the elemental studies showing the elemental composition of ZnO and further confirming the purity of ZnO NPs. The cytotoxic effect of ZnO NPs was evaluated against wild-type and doxorubicin-resistant MCF-7 and MDA-MB-231 breast cancer cell lines. The results showed the ability of ZnO NPs to inhibit the prefoliation of MCF-7 and MDA-MB-231 prefoliation through the induction of apoptosis without significant differences in both wild-type and resistance to doxorubicin.  相似文献   

18.
The comparative study on the thermo-physical properties of water-based ZnO nanofluids and Ag/ZnO hybrid nanofluids is reported in the present study. The outer surface of ZnO nanoparticles was modified with a thin coating of Ag nanoparticles by a wet chemical method for improved stability and heat transfer properties. The ZnO and Ag/ZnO nanofluids were prepared with varying volume concentration (??=?0.02–0.1%). The synthesized nanoparticles and nanofluids were characterized with different characterization methods viz., scanning electron microscopy, X-ray diffraction, dynamic light scattering, thermal conductivity measurement, and viscosity measurement. Results show that thermal conductivity of Ag/ZnO hybrid nanofluids is found to be significantly higher compared to ZnO nanofluids. The maximum thermal conductivity an enhancement for Ag/ZnO nanofluid (??=?0.1%) is found to 20% and 28% when it compared with ZnO nanofluid (??=?0.1%) and water, respectively.  相似文献   

19.
Pollution due to acidic and metal-enriched waters affects the quality of surface and groundwater resources, limiting their uses for various purposes. Particularly, manganese pollution has attracted attention due to its impact on human health and its negative effects on ecosystems. Applications of nanomaterials such as graphene oxide (GO) have emerged as potential candidates for removing complex contaminants. In this study, we present the preliminary results of the removal of Mn(II) ions from acidic waters by using GO functionalized with zinc oxide nanoparticles (ZnO). Batch adsorption experiments were performed under two different acidity conditions (pH1 = 5.0 and pH2 = 4.0), in order to evaluate the impact of acid pH on the adsorption capacity. We observed that the adsorption of Mn(II) was independent of the pHPZC value of the nanoadsorbents. The qmax with GO/ZnO nanocomposites was 5.6 mg/g (34.1% removal) at pH = 5.0, while with more acidic conditions (pH = 4.0) it reached 12.6 mg/g (61.2% removal). In turn, the results show that GO/ZnO nanocomposites were more efficient to remove Mn(II) compared with non-functionalized GO under the pH2 condition (pH2 = 4.0). Both Langmuir and Freundlich models fit well with the adsorption process, suggesting that both mechanisms are involved in the removal of Mn(II) with GO and GO/ZnO nanocomposites. Furthermore, adsorption isotherms were efficiently modeled with the pseudo-second-order kinetic model. These results indicate that the removal of Mn(II) by GO/ZnO is strongly influenced by the pH of the solution, and the decoration with ZnO significantly increases the adsorption capacity of Mn(II) ions. These findings can provide valuable information for optimizing the design and configuration of wastewater treatment technologies based on GO nanomaterials for the removal of Mn(II) from natural and industrial waters.  相似文献   

20.
ZnO nanoparticles were synthesized under mild hydrothermal conditions (T = 150 °C, P = autogenous, experimental duration = 18 h). Manganese was added as an additive to ZnO nanoparticles in different molar percentages. In situ surface-modification was successfully carried out for these manganese-added ZnO nanoparticles using n-butylamine as a surface modifier. The modified manganese-added ZnO nanoparticulates are hydrophilic in nature and are well dispersed in various solvents. The modified nanoparticles were characterized using powder XRD, FTIR, SEM, Zeta potential, and UV?CVis spectrophotometry. The characterization results indicated tailoring of the morphology and size of the nanoparticles, and changing the surface chemistry of the nanoparticles synthesized. The SEM results show that the surface modified manganese-added ZnO nanoparticles have a very thin layer of organic coverage around the inorganic nanoparticles, thus, giving rise to hybrid nanoparticles. The photodegradation of Brilliant Blue dye under sunlight showed the higher efficiency of the modified manganese-doped ZnO nanoparticles compared to the reagent-grade ZnO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号