首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A room-temperature redox molten salt for the study of electron transfers in semisolid media, based on combining bis(cyclopentadienyl)cobalt with oligomeric polyether counterions, [Cp2Co](MePEG350SO3), is reported. The transport properties of the new molten salt can be varied (plasticized) by varying the polyether content. The charge transport rate during voltammetric reduction of the ionically conductive [Cp2Co](MePEG350SO3) molten salt exceeds the actual physical diffusivity of [Cp2Co]+ because of rapid [Cp2Co](+/0) electron self-exchanges. The measured [Cp2Co](+/0) electron self-exchange rate constants (k(EX)) are proportional to the diffusion coefficients (D(CION)) of the counterions in the melt. The electron-transfer activation barrier energies are also close to those of ionic diffusion but are larger than those derived from optical intervalent charge-transfer results. Additionally, the [Cp2Co](+/0) rate constant results are close to those of dissimilar redox moieties in molten salts where D(CION) values are similar. All of these characteristics are consistent with the rates of electron transfers of [Cp2Co](+/0) (and the other donor-acceptor pairs) being controlled not by the intrinsic electron-transfer rates but by the rate of relaxation of the ion atmosphere around the reacting pair. In the low driving force regime of mixed-valent concentration gradients, the ion atmosphere relaxation is competitive with electron transfer. The results support the generality of the recently proposed model of ionic atmosphere relaxation control of electron transfers in ionically conductive, semisolid materials.  相似文献   

2.
Polypyridyl complexes of Co decorated with 350-Da polyether chains (Co(350)(2+)) form molten phases of nucleic acids when paired with DNA counterions (Co(350)DNA) or 25-mer oligonucleotides. Analysis of voltammetry and chronoamperometry of mixtures of these phases with complexes having ClO(4)(-) counterions (Co(350)(ClO(4))(2)) and no other diluent provides charge transport rates from the oxidation and reduction currents for the complexes. As the mole fraction of the Co(350)(ClO(4))(2) complex in the mixture is varied from ca. 0.25 to 1, the physical diffusion constants derived from the Co(III/II) wave increase from 1 x 10(-11) cm(2)/s to 5 x 10(-10) cm(2)/s, and apparent diffusion constants dominated by the Co(II/I) electron self-exchange increase from 1 x 10(-10) cm(2)/s to 2 x 10(-8) cm(2)/s. Pure Co(350)DNA melts, containing no Co(350)(ClO(4))(2) complex, do not exhibit recognizable voltammetric waves; DNA suppresses the Co(II/I) electron transfer reactions of Co complexes for which it is the counterion. There are therefore two microscopically distinct kinds of Co(350) complexes, those with DNA and those with ClO(4)(-) counterions, with respect to their Co(II/I) electron-transfer dynamics, leading to percolative behavior in their mixtures. The electron-transfer rates of the Co(II/I) couple are controlled by the diffusive relaxation of the ionic atmosphere around the reaction pair, and the inactivity of the bound Co complexes can be attributed to the very low mobility of the anionic phosphate groups in the DNA counterion. Substitution of sulfonated polystyrene for DNA produced similar results, suggesting that this phenomenon is general to other polymer counterions of low mobility. We conclude that the measured Co(II/I) charge transport and electron-transfer rate constants reflect more the diffusive mobility of the perchlorate counterion than the intrinsic Co(II/I) electron hopping rate.  相似文献   

3.
Films of neat metal salts with covalently attached oligoether side chains ([Co(bpy(CO(2)MePEG-350)(2))(3)](ClO(4))(2); bpy is 2,2'-bipyridine, and MePEG-350 is methyl-terminated oligomeric ethylene oxide with an average molecular weight of 350 Da) undergo marked changes in physical and electrochemical properties upon contact with CO(2). Electrochemical measurements indicate that the physical diffusion coefficient (D(PHYS)) of the Co(II) species, the observed rate constant for Co(II/I) self-exchange (k(EX)), and the physical diffusion coefficient of the perchlorate counterion (D(ClO4)) increase from 2.4 x 10(-11) to 7.0 x 10(-10) cm(2)/s, 6.8 x 10(5) to 4.5 x 10(6) M(-1) s(-1), and 3.4 x 10(-10) to 4.3 x 10(-9) cm(2)/s, respectively, as CO(2) pressure is increased from 0 to 2000 psi at 23 degrees C. A reduction in activation energy accompanies the enhancement of each of these properties over this pressure range. Increasing CO(2) pressure from ambient to 1000 psi causes the films to swell 13%, and free-volume theory explains the enhanced mass transport properties of the films. The origin of increases in electron-transfer kinetics is considered. Plots of log(k(EX)) versus log(D(PHYS)) and log(k(EX)) versus log(D(ClO4)) are both linear. This suggests that electron self-exchange is controlled by factors that also affect log(D(PHYS)) or log(D(ClO4)). One explanation is based on plasticization of the oligoether side-chain motions by CO(2) that affect ether dipole repolarization and Co complex diffusion rates. A second explanation for the changes in k(EX) is based on control of electron transfer by relaxation of counterions neighbor to the Co complexes, which is measured by D(ClO4). Both explanations represent a kind of solvent dynamics control of k(EX).  相似文献   

4.
The electrocatalytic carbon dioxide (CO2) reduction reaction (CO2RR) involves a variety of electron transfer pathways, resulting in poor reaction selectivity, limiting its use to meet future energy requirements. Polyoxometalates (POMs) can both store and release multiple electrons in the electrochemical process, and this is expected to be an ideal “electron switch” to match with catalytically active species, realize electron transfer modulation and promote the activity and selectivity of the electrocatalytic CO2RR. Herein, we report a series of new POM-based manganese-carbonyl (MnL) composite CO2 reduction electrocatalysts, whereby SiW12–MnL exhibits the most remarkable activity and selectivity for CO2RR to CO, resulting in an increase in the faradaic efficiency (FE) from 65% (MnL) to a record-value of 95% in aqueous electrolyte. A series of control electrochemical experiments, photoluminescence spectroscopy (PL), transient photovoltage (TPV) experiments, and density functional theory (DFT) calculations revealed that POMs act as electronic regulators to control the electron transfer process from POM to MnL units during the electrochemical reaction, enhancing the selectivity of the CO2RR to CO and depressing the competitive hydrogen evolution reaction (HER). This work demonstrates the significance of electron transfer modulation in the CO2RR and suggests a new idea for the design of efficient electrocatalysts towards CO2RR.

Polyoxometalates as electron regulators to promote the carbonyl manganese (MnL) electrocatalyst for highly efficient CO2 reduction in aqueous electrolyte.  相似文献   

5.
In this paper, we report a spectroelectrochemical investigation of proton-coupled electron transfer in flavodoxin D. vulgaris Hildenborough (Fld). Poly-L-lysine is used to promote the binding of Fld to the nanocrystalline, mesoporous SnO(2) electrodes. Two reversible redox couples of the immobilized Fld are observed electrochemically and are assigned by spectroelectrochemistry to the quinone/semiquinone and semiquinone/hydroquinone couples of the protein's flavin mononucleotide (FMN) redox cofactor. Comparison with control data for free FMN indicates no contamination of the Fld data by dissociated FMN. The quinone/semiquinone and semiquinone/hydroquinone midpoint potentials (E(q/sq) and E(sq/hq)) at pH 7 were determined to be -340 and -585 mV vs Ag/AgCl, in good agreement with the literature. E(q/sq) exhibited a pH dependence of 51 mV/pH. The kinetics of these redox couples were studied using cyclic voltammetry, cyclic voltabsorptometry, and chronoabsorptometry. The semiquinone/quinone reoxidation is found to exhibit slow, potential-independent but pH-sensitive kinetics with a reoxidation rate constant varying from 1.56 s(-)(1) at pH 10 to 0.0074 s(-)(1) at pH 5. The slow kinetics are discussed in terms of a simple kinetics model and are assigned to the reoxidation process being rate limited by semiquinone deprotonation. It is proposed that this slow deprotonation step has the physiological benefit of preventing the undesirable loss of reducing equivalents which results from semiquinone oxidation to quinone.  相似文献   

6.
The electron transfer (ET) dynamics of an unusually rigid pi-stacked (porphinato)zinc(II)-spacer-quinone (PZn-Q) system, [5-[8'-(4' '-[8' '-(2' ' ',5' ' '-benzoquinonyl)-1' '-naphthyl]-1' '-phenyl)-1'-naphthyl]-10,20-diphenylporphinato]zinc(II) (2a-Zn), in which sub-van der Waals interplanar distances separate juxtaposed porphyryl, aromatic bridge, and quinonyl components of this assembly, have been measured by ultrafast pump-probe transient absorption spectroscopy over a 80-320 K temperature range in 2-methyl tetrahydrofuran (2-MTHF) solvent. Analyses of the photoinduced charge-separation (CS) rate data are presented within the context of several different theoretical frameworks. Experiments show that at higher temperatures the initially prepared 2a-Zn vibronically excited S1 state relaxes on an ultrafast time scale, and ET is observed exclusively from the equilibrated lowest-energy S1 state (CS1). As the temperature decreases, production of the photoinduced charge-separated state directly from the vibrationally unrelaxed S1 state (CS2) becomes competitive with the vibrational relaxation time scale. At the lowest experimentally interrogated temperature ( approximately 80 K), CS2 defines the dominant ET pathway. ET from the vibrationally unrelaxed S1 state is temperature-independent and manifests a subpicosecond time constant; in contrast, the CS1 rate constant is temperature-dependent, exhibiting time constants ranging from 4x10(10) s(-1) to 4x10(11) s(-1) and is correlated strongly with the temperature-dependent solvent dielectric relaxation time scale over a significant temperature domain. Respective electronic coupling matrix elements for each of these photoinduced CS1 and CS2 pathways were determined to be approximately 50 and approximately 100 cm-1. This work not only documents a rare, if not unique, example of a system where temperature-dependent photoinduced charge-separation (CS) dynamics from vibrationally relaxed and unrelaxed S1 states can be differentiated, but also demonstrates a temperature-dependent mechanistic transition of photoinduced CS from the nonadiabatic to the solvent-controlled adiabatic regime, followed by a second temperature-dependent mechanistic evolution where CS becomes decoupled from solvent dynamics and is determined by the extent to which the vibrationally unrelaxed S1 state is populated.  相似文献   

7.
Molecular dynamics simulations are carried out to investigate the permeation of ions and water in a membrane consisting of single wall carbon nanotubes possessing no surface charges connecting two reservoirs. Our simulations reveal that there are changes in the first hydration shell of the ions upon confinement in tubes of 0.82 or 0.90 nm effective internal diameter. Although the first minimum in the g(r) is barely changed in the nanotube compared to in the bulk solution, the hydration number of Na(+) ion is reduced by 1.0 (from 4.5 in bulk to 3.5 in the 0.90 nm tube) and the hydration number is reduced further in the 0.82 nm tube. The changes in the hydration shell of Cl(-) ion are negligible, within statistical errors. The water molecules of the first hydration shell of both ions exchange less frequently inside the tube than in the bulk solution. We compare ion trajectories for ions in the same tube under identical reservoir conditions but with different numbers of ions in the tubes. This permits investigation of changes in structure and dynamics which arise from multiple ion occupancy in a carbon nanotube possessing no surface charges. We also investigated the effects of tube flexibility. Ions enter the tubes so as to form a train of ion pairs. We find that the radial distribution profiles of Na(+) ions broaden significantly systematically with increasing number of ion pairs in the tube. The radial distribution profiles of Cl(-) ions change only slightly with increasing number of ions in the tube. Trajectories reveal that Na(+) ions do not pass each other in 0.90 nm tubes, while Cl(-) ions pass each other, as do ions of opposite charge. An ion entering the tube causes the like-charged ions preceding it in the tube to be displaced along the tube axis and positive or negative ions will exit the tube only when one or two other ions of the same charge are present in the tube. Thus, the permeation mechanism involves multiple ions and Coulomb repulsion among the ions plays an essential role.  相似文献   

8.
The total (elastic and inelastic) intensity of electrons scattered by CO2 was measured in the s range of 1 to 12 Å?1 and compared with the theoretical intensity calculated from the Hartree-Fock molecular wave function and those calculated for the independent-atom-model (IAM ) molecule. In the range of s ? 4 Å?1 the electron correlation effect on the total scattered intensity was found to be represented by that for the IAM molecule.  相似文献   

9.
The cold crystallization at temperature Tcc (melting > Tcc > glass transition) and the postmelting crystallization of polylactic acid plasticized by compressed carbon dioxide (CO2) were studied using a high-pressure differential scanning calorimeter. The kinetics of the two kinds of crystallization were evaluated by the Avrami equation as a function of pressure at certain temperatures. The effects of using talc as a nucleation agent on the two types of crystallization under pressure were also investigated. The results show that compressed CO2 increased the mobility of the polymer chains in solid state, resulting in an increased rate of cold crystallization. The decreased rate of postmelting crystallization was mainly in the nucleation-controlled region, which indicates that the number of nuclei was decreased by the compressed CO2. The growth rate of the two crystallization types followed the Avrami equation, but the kinetics of each depended upon temperature and pressure. The inclusion of talc accelerated postmelting crystallization but had little effect on cold crystallization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2630–2636, 2008  相似文献   

10.
Biosensors based on direct electron transfer in redox proteins   总被引:1,自引:0,他引:1  
In biosensors based on direct electron transfer in redox proteins, efficient electron-transfer pathways between the immobilized redox protein and the electrode surface have to be established so to allow a fast electron transfer and concomitantly avoiding free-diffusing redox species. In this review, prerequisites for the direct electron transfer of redox proteins and immobilization of redox proteins on the electrode surfaces are addressed. Based on the specific nature of different proteins and non-manual immobilization procedures, possible biosensor designs are discussed, namely biosensors based on (1) ferritin; (2) cytochrome c; (3) myoglobin; (4) hemoglobin; (5) horseradish peroxidase; (6) catalase; (7) glucose oxidase; and (8) xanthine oxidase.  相似文献   

11.
In this paper, we describe the first observations of photoinitiated interprotein electron transfer (ET) within sol-gels. We have encapsulated three protein-protein complexes, specifically selected because they represent a full range of affinities, are sensitive to different types of dynamic processes, and thus are expected to respond differently to sol-gel encapsulation. The three systems are (i) the [Zn, Fe(3+)L] mixed-metal hemoglobin hybrids, where the alpha(1)-Zn and beta(2)-Fe subunits correspond to a "predocked" protein-protein complex with a crystallographically defined interface (Natan, M. J.; Baxter, W. W.; Kuila, D.; Gingrich, D. J.; Martin, G. S.; Hoffman, B. M. Adv. Chem. Ser. 1991, 228 (Electron-Transfer Inorg., Org., Biol. Syst.), 201-213), (ii) the Zn-cytochrome c peroxidase complex with cytochrome c, [ZnCcP, Fe(3+)Cc], having an intermediate affinity between its partners (Nocek, J. M.; Zhou, J. S.; De Forest, S.; Priyadarshy, S.; Beratan, D. N.; Onuchic, J. N.; Hoffman, B. M. Chem. Rev. 1996, 96, 2459-2489), and (iii) the [Zn-deuteromyoglobin, ferricytochrome b(5)] complex, [ZnDMb, Fe(3+)b(5)], which is loosely bound and highly dynamic (Liang, Z.-X.; Nocek, J.; Huang, K.; Hayes, R. T.; Kurnikov, I. V.; Beratan, D. N.; Hoffman, B. M. J. Am. Chem. Soc. 2002, 124, 6849-6859. Intersubunit ET within the hybrid does not involve second-order processes or subunit rearrangements, and thus is influenced only by perturbations of high-frequency motions coupled to ET. For the latter two complexes, sol-gel encapsulation eliminates second-order processes: protein partners encapsulated as a complex must stay together throughout a photoinitiated ET cycle, while proteins encapsulated alone cannot acquire a partner. It further modulates intracomplex motions of the two partners.  相似文献   

12.
Nickel-mediated carboxylation of α,ω-enyne was investigated. In the presence of a stoichiometric amount of zero-valent nickel complex, enynes having an electron-withdrawing group on alkene reacted with carbon dioxide via intramolecular cyclization to afford cyclic carboxylic acids in good yields. Various heterocyclic compounds were prepared by this carboxylative cyclization protocol. The reaction seems to proceed through oxidative cycloaddition of the α,ω-enyne moiety to a zero-valent nickel complex, regioselective insertion of carbon dioxide at the Csp3-nickel bond, and hydrolysis of the resulting oxanickelacycle intermediate.  相似文献   

13.
In the cycle of photosynthetic reaction centers, the initially oxidized special pair of bacteriochlorophyll molecules is subsequently reduced by an electron transferred over a chain of four hemes of the complex. Here, we examine the kinetics of electron transfer between the proximal heme c-559 of the chain and the oxidized special pair in the reaction center from Rps. sulfoviridis in the range of temperatures from 294 to 40 K. The experimental data were obtained for three redox states of the reaction center, in which one, two, or three nearest hemes of the chain are reduced prior to special pair oxidation. The experimental kinetic data are analyzed in terms of a Sumi-Marcus-type model developed in our previous paper,1 in which similar measurements were reported on the reaction centers from Rps. viridis. The model allows us to establish a connection between the observed nonexponential electron-transfer kinetics and the local structural relaxation dynamics of the reaction center protein on the microsecond time scale. The activation energy for relaxation dynamics of the protein medium has been found to be around 0.1 eV for all three redox states, which is in contrast to a value around 0.4-0.6 eV in Rps. viridis.1 The possible nature of the difference between the reaction centers from Rps. viridis and Rps. sulfoviridis, which are believed to be very similar, is discussed. The role of the protein glass transition at low temperatures and that of internal water molecules in the process are analyzed.  相似文献   

14.
In this article we report a femtosecond time-resolved transient absorption study of a neutral organic mixed-valence (MV) compound with the aim to gain insight into its charge-transfer dynamics upon optical excitation. The back-electron transfer was investigated in five different solvents, toluene, dibutyl ether, methyl-tert-butyl ether (MTBE), benzonitrile and n-hexane. In the pump step, the molecule was excited at 760 nm and 850 nm into the intervalence charge-transfer band. The resulting transients can be described by two time constant. We assign one time constant to the rearrangement of solvent molecules in the charge-transfer state and the second time constant to back-electron transfer to the electronic ground state. Back-electron transfer rates range from 1.5 × 1012 s−1 in benzonitrile through 8.3 × 1011 s−1 in MTBE, around 1.6 × 1011 s−1 in dibutylether and toluene and to 3.8 × 109 s−1 in n-hexane.  相似文献   

15.
We report the effect of aggregation in gold nanoparticles on their ultrafast electron-phonon relaxation dynamics measured by femtosecond transient absorption pump-probe spectroscopy. UV-visible extinction and transient absorption of the solution-stable aggregates of gold nanoparticles show a broad absorption in the 550-700-nm region in addition to the isolated gold nanoparticle plasmon resonance. This broad red-shifted absorption can be attributed to contributions from gold nanoparticle aggregates with different sizes and/or different fractal structures. The electron-phonon relaxation, reflected as a fast decay component of the transient bleach, is found to depend on the probe wavelength, suggesting that each wavelength interrogates one particular subset of the aggregates. As the probe wavelength is changed from 520 to 635 nm across the broad aggregate absorption, the rate of electron-phonon relaxation increases. The observed trend in the hot electron lifetimes can be explained on the basis of an increased overlap of the electron oscillation frequency with the phonon spectrum and enhanced interfacial electron scattering, with increasing extent of aggregation. The experimental results strongly suggest the presence of intercolloid electronic coupling within the nanoparticle aggregates, besides the well-known dipolar plasmon coupling.  相似文献   

16.
Neutralization reionization (NR) and charge reversal (CR) mass spectra of [CH(3)/CO(2)](-/+) ions are used to examine the behavior of the transient neutral radicals CH(3)OCO(.) and CH3COO(.). While neutralization of the ionic species is associated with considerable changes of the geometries resulting in unfavorable Franck-Condon factors for vertical electron transfer in high-energy collisions, NR experiments nevertheless demonstrate the existence of both radicals in the gas phase. Analysis of the NR and CR spectra provides insight into the decomposition reactions of CH(3)OCO(.) and CH(3)COO(.). For the former, loss of either CO or CO(2) can occur at the neutral stage, whereas decarboxylation prevails in the latter case.  相似文献   

17.
Charge transfer in DNA attracts substantial attention from researchers in a wide group of fields such as bioscience, nanotechnology and physical chemistry. It is well known that both positive and negative charges, which are holes and excess electrons, respectively, contribute to the charge transfer in DNA. In the case of hole transfer in DNA, detailed mechanisms and dynamical parameters have been estimated by means of time-resolved spectroscopic methods and product analysis. On the other hand, detailed dynamics of excess electron transfer have not been established yet, although several aspects have been revealed by the continuous efforts of various research groups. In the present Perspective, studies on the charge transfer dynamics in DNA are summarized.  相似文献   

18.
We present results from a molecular dynamics study of the dissociation behavior of carbon dioxide (CO(2)) hydrates. We explore the effects of hydrate occupancy and temperature on the rate of hydrate dissociation. We quantify the rate of dissociation by tracking CO(2) release into the liquid water phase as well as the velocity of the hydrate-liquid water interface. Our results show that the rate of dissociation is dependent on the fractional occupancy of each cage type and cannot be described simply in terms of overall hydrate occupancy. Specifically, we find that hydrates with similar overall occupancy differ in their dissociation behavior depending on whether the small or large cages are empty. In addition, individual cages behave differently depending on their surrounding environment. For the same overall occupancy, filled small and large cages dissociate faster in the presence of empty large cages than when empty small cages are present. Therefore, hydrate dissociation is a collective phenomenon that cannot be described by focusing solely on individual cage behavior.  相似文献   

19.
Intramolecular photoinduced electron transfer (PET) processes occurring in dyads with a free base porphyrin-tetraazaanthracene donor (P) and either a tetracyanonaphthoquinidodimethane (TCQ) or benzoquinone (BQ) acceptor linked by a rigid six σ-bond polynorbornane bridge ([6]) have been investigated. For P[6]BQ, PET in the polar solvent benzonitrile (s = 25.9) occurs with a rate constant (kPET) of 1.6 × 108 s−1 but is not evident in solvents less polar than tetrahydrofuran (s = 7.52). For P[6]TCQ, highly efficient forward PET occurs in both polar and non-polar solvents (kPET > 2 × 1010 s−1). For P[6]TCQ the lifetime of the resulting charge-separated state decreases markedly with increasing solvent polarity. The results are discussed in the context of the likely mechanisms for electronic coupling and current theories for PET processes in such linked molecular systems.  相似文献   

20.
Ultrafast photoinduced bimolecular electron transfer (ET) dynamics between 7-aminocoumarin derivatives and N,N-dimethylaniline (DMAN) has been studied in neutral (TX100), cationic (DTAB) and anionic (SDS) micellar media. A very fast decay time constant (tau(fast)) shorter than approximately 10 ps has been observed for the coumarins in the presence of DMAN in all of the three micellar media. In this time scale, reactants in the micellar phase undergo ET interactions without involving diffusion or reorientation of the reactants and thus can be envisaged as equivalent to nondiffusive bimolecular ET reaction. The fastest ET rates estimated as the inverse of the shortest lifetime components of the fluorescence decay (k(et) congruent with tau(fast)(-1)) nicely follow the predicted Marcus inversion behavior with reaction exergonicity (-DeltaG degrees), irrespective of the nature of micelles considered. Onset of inversion in ET rates occur at approximately 0.61 eV lower exergonicity in SDS and TX100 micelles compared with that in DTAB micelle and are rationalized following two-dimensional ET (2DET) theory. These differences suggest the possibility of tuning Marcus inversion by proper selection of micelles. Interestingly, ET rates (k'(et)) obtained from the conventional Stern-Volmer analysis of the relatively longer time constants of the fluorescence decays also exhibit similar Marcus correlation with DeltaG degrees, showing clear inversion behavior. Fitting of Marcus correlation curves for k(et) and k'(et) indicate two largely different values for the electronic coupling parameters. In micellar media, as the interacting donor-acceptor molecules are on an average expected to be separated by an intervening surfactant chain and the reorientation rate of the reactants is quite slow, it is predicted that the ultrafast ET (k(et)) component arises because of the surfactant separated donor-acceptor pairs that are orientated perfectly to give the maximum electronic coupling. The slower ET (k'(et)) is predicted to arise because of those pairs where the donor-acceptor orientations are not very suitable but good enough to give a sizable electronic coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号