首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 273 毫秒
1.
The gain characteristics of ErxY2 − xSiO5 waveguide amplifiers have been investigated by solving rate equations and propagation equations. The gain at 1.53 μm as a function of waveguide length, Er3+ concentration and pump power is studied pumping at three different wavelengths of 654 nm, 980 nm and 1480 nm, respectively. The optimum Er3+ concentrations of 1 × 1021 cm− 3-2 × 1021 cm− 3 with the high gain are obtained for all three pump wavelengths. Pumping at 654 nm wavelength is shown to be the most efficient one due to weak cooperative upconversion. A maximum 16 dB gain at 1 mm waveguide length under a 30 mW pump with Er3+ concentration of 1 × 1021 cm− 3 is demonstrated pumping at 654 nm wavelength.  相似文献   

2.
A planar optical waveguide has been formed in a LiB3O5 crystal using 6.0 MeV Cu+-ions with a dose of 1 × 1015 ions/cm2 at room temperature. Possible propagating modes were measured at a wavelength of 633 nm using the prism-coupling method. The refractive index profiles of the waveguide were reconstructed by an effective refractive index method and the beam propagation method was used to investigate the properties of the propagation modes in the formed waveguide. The results suggest that the fundamental TE0 and TM0 modes may be well-confined and propagate a longer distance inside the waveguide. The implantation process was also simulated using the transport of ions in matter code (TRIM), which indicates that the nuclear energy deposition may be the main factor for the refractive index change.  相似文献   

3.
The observation of four-wave mixing in a 6 mm long sandwiched slot waveguide filled with Si-nc/SiO2 is reported for optical powers usually employed in telecommunication systems. A −47 dB conversion efficiency is measured in fabricated waveguides for input signal powers around 12 dBm on chip and a waveguide length of 6 mm. Furthermore, the calculated non-linear coefficient is found to be n2 = 2.67 × 10−17 m2/W. It is also expected that, by using longer waveguides, it would be possible to achieve wavelength conversion.  相似文献   

4.
We report on Nd:CNGG active planar waveguides produced by 6.0 MeV carbon ion implantation at fluence from 1 × 1014 ions/cm2 to 8 × 1014 ions/cm2. The refractive index profiles, which were reconstructed according to the measured dark mode spectroscopy, showed that the refractive indices had negative changes in the surface region, forming typical barrier waveguide. The width of waveguide structure induced by carbon ion implantation is ∼3.8 μm. The typical barrier-shaped distribution may be mainly due to the nuclear energy deposition of the incident ions into the substrate. By performing a modal analysis on the observed TE modes, it was found that the TE0 and TE1 modes can be well-confined inside the waveguide.  相似文献   

5.
The photocarrier mobility of Fe 0.03 wt%-doped potassium lithium tantalate niobate (K0.95Li0.05Ta0.61Nb0.39O3) was investigated by time-of-flight (TOF) measurement. The longitudinal photocarrier response due to pulsed excitation leads to values of the drift mobility of μh = 1.45 × 10−2 cm2/V s for holes, μe = 0.325 × 10−2 cm2/V s for electrons, and a value for the range of holes (μτ)h = 4.38 × 10−5 cm2/V at room temperature and at low field 3 KV/cm. The response time of holes and electrons (or the relaxation time) is determined to be 3.02 × 10−3 s and 3.74 × 10−3 s, respectively. The mobility of holes strongly depends on the field strength, and is observed to decrease with increasing bias field.  相似文献   

6.
The planar waveguide in x-cut Yb:GdVO4 crystal has been fabricated by 6.0 MeV carbon ion implantation with the fluence of 1 × 1014 ions/cm2 at room temperature. The modes of the waveguide were measured by the prism-coupling method with the wavelength of 633 nm and 1539 nm, respectively. An enhanced ordinary refractive index region was formed with a width of about 4.0 μm beneath the sample surface to act as a waveguide structure. By performing a modal analysis on the observed transverse magnetic polarized modes, it was found that all the transverse magnetic polarized modes can be well-confined inside the waveguide. Strong Yb-related photoluminescence in Yb:GdVO4 waveguide has been observed at room temperature, which reveals that it exhibits possible applications for integrated active photonic devices.  相似文献   

7.
Two fundamental TE10 modes are considered to interfere at a small angle θ and then propagate along the z-axis in an evacuated rectangular waveguide. The electron trajectory in the resultant field and the expressions for energy gain and the acceleration gradient are obtained, when the electron is injected along the z-axis. A 50 keV electron gains 718 keV energy in a 4.0 cm × 2.5 cm waveguide, when the microwave with intensity of 1 × 1010 W/cm2 and frequency 5.577 GHz is used and the modes superpose at an angle of 10°; here the maximum acceleration gradient is obtained as 251 MeV/m. The energy gain and acceleration gradient are decreased with increasing width of the waveguide and microwave frequency. Higher gradient and larger energy gain are obtained for the higher microwave intensity, smaller angle of superposition and also when the electron is injected with larger initial energy.  相似文献   

8.
Electrorefractive effect is experimentally demonstrated in an all-silicon optical structure. A highly doped Si P+ layer is embedded in the intrinsic region of a PIN diode integrated in a SOI waveguide. Holes are confined at equilibrium around the P+ layer. By applying a reverse bias to the diode, electrical field sweeps the carriers out of the active region. Free carrier concentration variations are responsible for local refractive index variations leading to an effective index variation of the waveguide optical mode and to an optical absorption variation. As a figure of merit, the product VπLπ, determined from the measured effective index variation, is equal to 3.1 V cm. Furthermore, the device performances have theoretically been investigated. Estimations show that VπLπ as small as 1 V cm are feasible using optimized structures. Response times lower than 2 ps are predicted, which gives the possibility to achieve very high-speed modulation. Furthermore, a temperature increases from 300 to 400 K does not change the index variation amplitude, and despite the carrier mobility reduction, response times are still lower than 2 ps.  相似文献   

9.
Er3+-Yb3+ co-doped waveguide amplifiers fabricated using thermal two-step ion-exchange are demonstrated. K+-Na+ ion-exchange process was first carried out in pure KNO3 molten bath, and then field-assisted annealing (FAA) was used to make the buried waveguides. The effective buried depth is estimated to be ∼3.4 μm for the buried FAA waveguides. With the use of cut-back method, the fiber-to-guide coupling loss of ∼4.38 dB, the waveguide loss of ∼2.27 dB/cm, and Er3+ absorption loss ∼5.7 dB were measured for a ∼1.24-cm-long waveguide. Peak relative gain of ∼7.0 dB is obtained for a ∼1.24-cm-long waveguide. The potential for the fabrication of compact optical amplifiers operating in the range of 1520-1580 nm is also demonstrated.  相似文献   

10.
Intense blue upconversion emission at 480 nm has been obtained at room temperature in Tm3+-Nd3+ co-doped Ta2O5 channel waveguides fabricated on a Si substrate, when the sample is excited with an infrared laser at 793 nm. The upconversion mechanism is based on the radiative relaxation of the Nd3+ ions (4F3/2 → 4I11/2) at about 1064 nm followed by the absorption of the emitted photons by Tm3+ ions in the 3H4 excited state. A coefficient of energy transfer rate as high as 3 × 10−16 cm3/s has been deduced using a rate equation analysis, which is the highest reported for Tm-Nd co-doped systems. The confinement of the 1064 nm emitted radiation in the waveguide structure is the main reason of the high energy transfer probability between Nd3+ and Tm3+ ions.  相似文献   

11.
We report on the optical planar waveguide formation and modal characterization in Nd: GdVO4 crystals by triple oxygen ion implantation at energies of (2.4, 3.0, and 3.6 MeV) and fluences of (1.4, 1.4, and 3.1)  × 1014ions/cm2. The prism-coupling method is used to investigate the dark-mode property at wavelength of 632.8 nm. The refractive index profiles of the waveguide are reconstructed by an effective refractive index, neff method. The modal analysis shows that the fields of TE modes are well restricted in the guiding region, which means the formation of nonleaky waveguide in the crystal.  相似文献   

12.
A thermo-optical variable optical attenuator was studied based on silicon on insulator (SOI) substrate waveguide. It is composed by the single-mode waveguide, taper waveguide, multi-mode waveguide, and inclined electrode. By adjusting the applied voltage on the inclined electrode it can achieve continuously variable attenuation of the output light. The results we studied show that when the applied voltage is about 4.7 V (the corresponding power is 233 mW), the variation of the waveguide's core temperature is about 33 °C, the refractive index changes more than 5.0 × 10−3 and the attenuation will reach 35 dB, and the response time is only 35 μs.  相似文献   

13.
We report on the optical planar waveguide formation and modal characterization in Nd:LuVO4 crystals by triple-energy O3+-ion implantation at energies of 2.4, 3.0, and 3.6 MeV and doses of 1.4, 1.4, and 3.1×1014 ions/cm2, respectively. The prism-coupling method is used to investigate the dark-mode property at a wavelength of 633 nm. The refractive index profiles of the waveguide are reconstructed by the reflectivity calculation method (RCM). The modal analysis shows that the fields of TE modes are well restricted in the guiding region, which indicates the formation of non-leaky waveguide in the crystal.  相似文献   

14.
We report on the formation of the planar waveguide by 550 keV O ion followed by 250 keV O ion implantation in lithium niobate (LiNbO3), at fluences of 6 × 1014 ions/cm2 and 3 × 1014 ions/cm2, respectively. The Rutherford backscattering/channeling spectra have shown the atomic displacements in the damage region before and after annealing. A broad and nearly homogeneous damage layer has been formed by double-energy ion implantation after annealing. Both the dark mode spectra and the data of refractive index profile verified that the extraordinary refractive index was enhanced in the ion implanted region of LiNbO3. A homogeneous near-field intensity profile was obtained by double-low-energy ion implantation. There is a reasonable agreement between the simulated modal intensity profile and the experimental data. The estimated propagation loss is about 0.5 dB/cm.  相似文献   

15.
Rajneesh Kaler 《Optik》2011,122(7):620-625
In this paper, we have demonstrated the quality-of-service offered by the metropolitan area network which is based on optical cross connect (OXC) and arrayed waveguide grating (AWG) demultiplexer operating at 10 Gb/s with 0.1 nm channel spacing for NRZ signal transmission. The data is successfully transmitted to a distance of 40 km with a reasonably good BER of 2.388 × 10−35. The OXC and AWG demultiplexers in the proposed architecture allow incremental expansion in terms of the number of wavelength channels to be transmitted. Dispersion and crosstalk are the main signal-degrading factors arising from the operation of the OXC and the effectiveness of each factor is individually investigated.  相似文献   

16.
A high sensitive and compact refractive index sensor based on slotted photonic crystal waveguide (S-PhCW) is demonstrated. This design is worked on a Mach–Zehnder interferometer (MZI) configuration with S-PhCW as the measuring arm, which can be used to detect any changes in refractive index that correspond to different concentration of the measuring liquid. Combining the slow light enhancement in photonic crystal waveguide (PhCW) with the advantage of excellent optical confinement in slot waveguide, the sensitivity of this simple scheme can reach to 2.3 × 109 nm/RIU with the active region of only 1 mm long.  相似文献   

17.
Lithium borate (Li2B4O7) is a low Zeff, tissue equivalent material that is commonly used for medical dosimetry using the thermoluminescence (TL) technique. Nanocrystals of lithium borate were synthesized by the combustion method for the first time in the laboratory. TL characteristics of the synthesized material were studied and compared with those of commercially available microcrystalline Li2B4O7. The optimum pre-irradiation annealing condition was found to be 300 °C for 10 min and that of post-irradiation annealing was 300 °C for 30 min. The synthesized Li2B4O7 nanophosphor has very poor sensitivity for low doses of gamma up to 101 Gy whereas from 101 to 4.5×102 Gy this phosphor exhibits a linear response and then from 4.5×102 to 103 Gy it shows supralinearity. Thermoluminescence properties of Li2B4O7 nanophosphor doped with Cu has also been investigated in this paper. It shows low fading and a linear response over a wide range of gamma radiation from 1×102 to 5×103 Gy. Therefore the synthesized lithium borate nanophosphor doped with Cu may be used for high dose measurements of gamma radiations.  相似文献   

18.
A polymer waveguide was fabricated to amplify the evanescent optical field for biosensing. The structure of waveguide was designed to propagate a normal single mode at the input and output regions for low loss beam coupling and propagation. A sensing region was formed in the middle of the waveguide to activate the evanescent mode and to induce high birefringence by depositing a thin dielectric film with a high refractive index on a single mode waveguide. A polymer waveguide with the dimensions of 7 μm-width and 2.5 μm-thickness was fabricated by photolithography and dry-etching. The active region of the TiO2 thin film was fabricated with the dimensions of 20 mm-length, 20 nm-thickness and 2 mm-tapered tail. A polarimetric interference technique was used to evaluate the evanescent waveguide biosensor, and biomaterial such as glycerol was tested. The sensitivity of the sensor increased with increasing TiO2 film thickness. For the fabricated waveguide with a 20 nm-thick TiO2 film, the measured index change to the lead phase variation of 2π was 1.8 × 10−4.  相似文献   

19.
Oxygen ions with energies of 6.0 or 3.0 MeV were implanted into y-cut Yb:YCOB crystals at fluences ranging from 5.0 × 1013 to 2.0 × 1015 ions/cm2 at room temperature, forming optical planar waveguide structures. Dark-mode line spectroscopy was applied at two wavelengths, 633 and 1539 nm, in various excitation configurations, showing strong enhancement of one of the indices (nx) in the implanted near surface. The nx refractive index profile is reconstructed by a reflectivity calculation method and compared to the ion energy losses profiles deduced from SRIM-code simulation. Moreover, the near-field patterns were imaged by an end-fire coupling arrangement.  相似文献   

20.
We report on the structural and optical characterization of waveguides formed in YbVO4 crystals by Cu2+-ion implantation with an energy of 3.0 MeV and doses of 3.0×1014-1.0×1015 ions/cm2. The damage properties are determined by RBS/Channeling measurements with the help of simulation code RUMP. The m-line method is used to characterize the dark-mode spectroscopy in the planar waveguides. According to the reconstructed refractive index profile of the waveguide cross section, a numerical simulation is carried out to investigate the confinement of the light in the waveguides based on the beam propagation method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号