首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 20.2 W laser-diode-end-pumped Nd:YVO4 slab laser with a hybrid resonator at 1342 nm was demonstrated. The slope efficiency and optical-to-optical conversation efficiency were 30% and 23%, respectively. At output power of 16 W, the M2 factor in stable direction was 2.3, and in the unstable direction was 1.2.  相似文献   

2.
A diode-end-pumped passively Q-switched 912 nm Nd:GdVO4/Cr4+:YAG laser and its efficient intracavity frequency-doubling to 456 nm deep-blue laser were demonstrated in this paper. Using a simple V-type laser cavity, pulsed 912 nm laser characteristics were investigated with two kinds of Cr4+:YAG crystal as the saturable absorbers, which have the different initial transmissivity (TU) of 95% and 90% at 912 nm. When the TU = 95% Cr4+:YAG was used, as much as an average output power of 2.8 W 912 nm laser was achieved at an absorbed pump power of 34.0 W, and the pulse width and the repetition rate were ∼ 40.5 ns and ∼ 76.6 kHz, respectively. To the best of our knowledge, this is the highest average output power of diode-pumped passively Q-switched Nd3+-doped quasi-three-level laser. Employing a BiBO as the frequency-doubling crystal, 456 nm pulsed deep-blue laser was obtained with a maximum average output power of 1.2 W at a repetition rate ∼ 42.7 kHz.  相似文献   

3.
Based on the rate equation of Nd3+-doped quasi-three-level lasers, a theoretical model of diode-end-pumped continuous-wave 912 nm Nd:GdVO4 laser is presented. Lasing threshold and slope efficiency considering reabsorption effect are calculated and analyzed. It is found that the output performance of 912 nm laser operating at room temperature is influenced remarkably by the reabsorption loss and spatial distribution of the pump beam and laser beam. In experiments, the output power and average slope efficiency of 912 nm laser were investigated under different conditions. After optimization at the parameters of laser medium, working temperature and spatial distribution of the pump beam, up to 16.2 W continuous-wave 912 nm laser output was obtained at incident pump power of 67.0 W, with an average slope efficiency of 41.7%, to the best of our knowledge, this is the highest output power of diode-pumped 912 nm Nd:GdVO4 laser by far.  相似文献   

4.
A high power diode-end-pumped passively Q-switched and mode-locking (QML) Nd:GdVO4 laser at 912 nm was demonstrated for the first time, to the best of our knowledge. A Z-type laser cavity with Cr4+:YAG crystals as the intracavity saturable absorber were employed in the experiments. Influence of the initial transmission (TU) of the saturable absorber on the QML laser performance was investigated. Using the TU = 95% Cr4+:YAG, as much as an average output power of 2.0 W pulsed 912 nm laser was produced at an absorbed pump power of 25.0 W, then the repetition rates of the Q-switched envelope and the mode-locking pulse were ~ 224 kHz and ~ 160 MHz, respectively. Whereas the maximum output power was reduced to 1.3 W using the TU = 90% Cr4+:YAG, we obtained a 100% modulation depth for the mode-locking pulses inside the Q-switched envelope.  相似文献   

5.
An acousto-optically Q-switched self-Raman laser emitting at 1097 nm is demonstrated with a c-cut Nd:YVO4 crystal, using a fiber-coupled 880 nm diode laser as the pumping source. Raman laser performances in concave-plane and plane-plane oscillating cavities are studied and compared. With an absorbed diode power of 12.4 W and a pulse repetition rate of 50 kHz, the highest output power of 1.45 W is obtained from the plane-plane cavity, corresponding to an optical-to-optical conversion efficiency of 11.7%.  相似文献   

6.
By exploiting the intracavity frequency conversion configuration, a diode end-pumped acousto-optic (AO) Q-switched Nd:YVO4 355 nm laser was demonstrated in this paper. Two LBO crystals were inserted in the cavity to realize the frequency tripling operation, a cascade of the second harmonic generation (SHG) and sum frequency mixing (SFM). Under the absorbed pump power of 13 W, the maximum average output power at 355 nm was obtained to be 1.32 W at the repetition frequency of 17 kHz, with the optical-to-optical conversion efficiency of 10.2%. The corresponding pulse width was 10.2 ns, with the energy of a single pulse and corresponding peak power estimated to be 77.6 μJ and 7.61 kW, respectively.  相似文献   

7.
A diode end-pumped passively Q-switched Nd: Y0.8Lu0.2VO4 laser with a Cr4+: YAG crystal is first demonstrated in this paper. The maximum continuous wave (CW) output power of 5.59 W is obtained at the incident pump power of 13.07 W with the output transmission T = 20%, resulting in an optical-to-optical efficiency of 42.7%. For Q-switching operation, the measured pulse duration of 8.5 ns, the pulse energy of 45.24 μJ and the peak power of 5.32 kW are respectively obtained for the output transmission of 50% when the Cr4+: YAG crystal is used with an initial transmission (T0) of 60%.  相似文献   

8.
A laser diode end-pumped 10 at.% doped Yb:YAG microchip crystal intracavity frequency doubled all solid-stated green laser is reported in this paper. Using one plano-concave resonator, with the pump power of 1.2 W, 44.2 mW TEM00 continuous wave (CW) laser at 525 nm was obtained, the optical conversion efficiency was about 3.7%. When a Cr:YAG crystal with initial transmission of 95.5% inserted in the resonator, the maximum output power of 6.4 mW, pulse duration width of 49.1 ns, pulse repetition rate of 2.45 kHz, and peak power of 53.1 W at 515 nm were achieved when the pump power was 1.2 W. The wavelength changed from 525 nm to 515 nm and the threshold was only 725 mW.  相似文献   

9.
In this paper, a stable end-pumped intracavity-frequency-doubled green laser was demonstrated. The interaction length of different pump systems before setting up the experiment was analyzed in order to find out an effective pump system. The experimental results indicate that the pump system in our configuration is beneficial to the efficient CW Nd lasers. A continue-grown composite crystal YVO4/Nd:YVO4, with Nd3+ concentration doping of 0.3 at.%, is used as laser medium. With an incident pump power of 27.5 W, as high as 7.2 W of CW output power at 532 nm was achieved. The optical-to-optical conversion efficiency of 26.2% was obtained in CW modes with a flat-flat cavity design.  相似文献   

10.
A comparative study of Nd:GdVO4 and Nd:YVO4 crystal lasers pumped by a fiber-coupled diode array has been conducted at the 4F3/2-4I9/2 transitions wavelengths of 912 nm and 914 nm, as well as when intracavity frequency-doubled to 456 nm and 457 nm, respectively. At the fundamental wavelength of 912 nm and second harmonic wavelength of 456 nm, maximum output powers from the Nd:GdVO4 crystal laser were 7.85 W and 4.6 W at a pump power of 29 W. All the results obtained from Nd:GdVO4 were superior to those of Nd:YVO4, indicating that Nd:GdVO4 is a more efficient laser crystal than Nd:YVO4 for laser operation on the 4F3/2-4I9/2 transitions.  相似文献   

11.
By using a piece of GaAs wafer as the saturable absorber, the performance of the passively Q-switched composite Nd:YVO4 laser with different output couplers has been demonstrated for the first time as far as we know. The largest continuous wave output power of 1.52 W is obtained at the incident pump power of 5.31 W, giving an optical conversion efficiency of 28.7% and a slope efficiency of 30.2%. The shortest pulse width of 11 ns, the largest single-pulse energy of 2.49 μJ and the highest peak power of 190 W are also obtained.  相似文献   

12.
A laser diode pumped actively Q-switched Nd:GdVO4 self-Raman laser operating at 1173 nm is presented. The maximum output power was 2.26 W at an incident pump power of 18 W, with the corresponding optical conversion efficiency of 12.6%. Two different resonator configurations were investigated in order to achieve high output power and efficiency.  相似文献   

13.
A dual-wavelength laser at 1064 nm and 1319 nm is obtained by a single Nd:YAG crystal rod. On the basis of 1064 nm and 1319 nm dual-wavelength laser installation, the second harmonic waves at 532 nm and 660 nm can be achieved by using non-linear frequency conversion technology. When 1064 nm and 1319 nm lasers oscillate simultaneously, the maximum output power is 30.5 W and 8.78 W, respectively. When the 1319 nm laser is restrained, we obtain a 35.6 W maximum output power at 1064 nm and by contrary 11.2 W at 1319 nm. The maximum output powers of 532 nm and 660 nm lasers are 5.34 W and 1.353 W when oscillating simultaneously. With one of them restrained, the maximum output power is 6.72 W at 532 nm and 1.90 W at 660 nm. The optimum repetition rate of the acousto-optic Q-switch is 10.5 KHz and 20.5 KHz for 532 nm and 660 nm lasers, respectively. The optical-to-optical conversion efficiency from the fundamental waves to the harmonic waves is 17.5% and 15.4%. The instability is less than 2%.  相似文献   

14.
A thin-disc Nd:GdVO4 laser in multi-pass pumping scheme was developed. Continuous-wave output power of 13.9 W at 1.06 μm for an absorbed power at 808 nm of 22 W was demonstrated from a 250-μm thick, 0.5-at.% Nd:GdVO4 in a 4-pass pumping; the slope efficiency in absorbed power was 0.65, or 0.47 in input power. Output performances were also investigated under diode laser pumping at 879 nm, directly into the emitting 4F3/2 level: maximum power of 3.6 W was obtained at 6.2 W of absorbed power with 0.69 slope efficiency. Compared with pumping at 808 nm, into the highly absorbing 4F5/2 level, improvements of laser parameter in absorbed power (increase of slope efficiency, decrease of threshold) were obtained, showing the advantages of the pumping into the emitting level. However, the laser performances expressed vs. the incident power were modest owing to the low absorption efficiency at 879 nm. Thus, increased number of passes of the medium would be necessary in order to match the performances in input power obtained under 808-nm pumping.  相似文献   

15.
A new Yb-doped oxyorthosilicate laser crystal, Yb:Gd2SiO5 (Yb:GSO), has been grown by the Czochralski (Cz) method. The crystal structure was determined by means of X-ray diffraction analysis. Room temperature absorption and fluorescence spectra of Yb3+ ions in GSO crystal were measured. Then, spectroscopic parameters of Yb:GSO were calculated and compared with those of another Yb-doped oxyorthosilicate crystal Yb:YSO. Results indicated that Yb:GSO crystal seemed to be a very promising laser gain media in generating ultra-pulses and tunable solid state laser applications. As expected, the output power of 2.72 W at 1089 nm was achieved in Yb:GSO crystal with absorbed power of only 4.22 W at 976 nm, corresponding to the slope efficiency of 71.2% through the preliminary laser experiment.  相似文献   

16.
We reported the Ho:GdVO4 laser pumped by Tm-doped laser with a fiber Bragg grating. 2.03 W continuous-wave Ho:GdVO4 laser output power is obtained under 10.5 W incident pump power, with the optical-to-optical conversion efficiency and slope efficiency of 19.3% and 32.3%, respectively, at 7 °C. We can see that, the lower the temperature is, the better the laser output character is. The beam quality factor is M2 ∼ 1.29 measured by the traveling knife-edge method.  相似文献   

17.
A high power, quasi-continuous wave ultraviolet laser at 355 nm was obtained by intracavity frequency tripling of a diode side-pumped acousto-optic (AO) Q-switched Nd:YAG laser. Type II critical phase-matched KTP and LBO crystals were used for the second harmonic generation and the third harmonic generation, respectively. Under the pump power of 180 W, 7.8 W average output power at 355 nm was obtained at 8 kHz with the pulse width of 50 ns, corresponding to the pump-to-ultraviolet conversion efficiency of 4.3%. The peak power and single pulse energies were estimated to be 18.8 kW and 938 μJ. Its far-field divergence was measured to be about 3.8 mrad. The instability of the 355 nm laser was less than 1% at an output power of 6.3 W for 2 h operation.  相似文献   

18.
DFT calculations are employed to bulk and surface properties of spinel oxide Co3O4. The bulk magnetic structure is calculated to be antiferromagnetic, with a Co2+ moment of 2.631 μB in the antiferromagnetic state. There are three predicted electron transitions O(2p) → Co2+(t2g) of 2.2 eV, O(2p) → Co3+(eg) of 2.9 eV and Co3+(t2g) → Co2+(t2g) of 3.3 eV, and the former two transitions are close to the corresponding experimental values 2.8 and 2.4 eV. The naturally occurring Co3O4 (1 1 0) and (1 1 1) surfaces were considered for surface calculations. For ideal Co3O4 (1 1 0) surfaces, the surface relaxations are not significant, while for ideal Co3O4 (1 1 1) surfaces the relaxation of Co2+ cations in the tetrahedral sites is drastic, which agrees with the experiment observation. The stability over different oxygen environments for possible ideal and defect surface terminations were explored.  相似文献   

19.
We demonstrate a compact high-power passively mode-locked TEM00 Nd:YVO4 laser with 1 GHz repetition rate by 880 nm diode direct-in-band pumping. At the absorbed pump power of 19.9 W, a stable mode-locked output power of 7.8 W was obtained with the pulse width of 21.4 ps and a beam quality factor of M2 < 1.5, corresponding to an optical-optical conversion efficiency of 39.2%.  相似文献   

20.
A diode pumped passively mode locked Nd:CaYAlO4 (Nd:CYA) laser is demonstrated for the first time to the authors' knowledge. Using a V-shaped cavity and a semiconductor saturable absorbing mirror (SESAM), self-started mode locking of the laser is experimentally achieved. The mode-locked pulses are as short as 3.9 ps at a central wavelength of 1080.2 nm. The mode-locked laser produced a maximum average output power of 2.25 W with a slope efficiency of 23.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号