首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 393 毫秒
1.
王文慧  张孬 《物理学报》2018,67(24):247302-247302
金属纳米结构的表面等离激元可以突破光学衍射极限,为光子器件的微型化和集成光学芯片的实现奠定基础.基于表面等离激元的各种基本光学元件已经研制出来.然而,由于金属结构的固有欧姆损耗以及向衬底的辐射损耗等,表面等离激元的传输能量损耗较大,极大地制约了其在纳米光子器件和回路中的应用.研究能量损耗的影响因素以及如何有效降低能量损耗对未来光子器件的实际应用具有重要意义.本文从纳米线表面等离激元的基本模式出发,介绍了它在不同条件下的场分布和传输特性,在此基础上着重讨论纳米线表面等离激元传输损耗的影响因素和测量方法以及目前常用的降低传输损耗的思路.最后给出总结以及如何进一步降低能量损耗方法的展望.表面等离激元能量损耗的相关研究对于纳米光子器件的设计和集成光子回路的构建有着重要作用.  相似文献   

2.
As typical one‐dimensional nanostructures for waveguiding tightly confined optical fields beyond the diffraction limit, metal nanowires have been used as versatile nanoscale building blocks for functional plasmonic and photonic structures and devices. Metal nanowires, especially those fabricated by bottom‐up synthesis such as Ag and Au nanowires, usually exhibit excellent diameter uniformity and surface smoothness with diameters down to tens of nanometers, which offers great opportunities for plasmonic waveguiding of optical fields with deep‐subwavelength confinement, coherence maintenance and low scattering losses. Based on nanowire plasmonic waveguides, a variety of applications ranging from plasmonic couplers, interferometers, resonators to photon emitters have been reported in recent years. In this article, significant progresses in these nanowire plasmonic waveguides, circuits and devices are reviewed. Future outlook and challenges are also discussed.  相似文献   

3.
岳嵩  李智  陈建军  龚旗煌 《物理学报》2011,60(9):94214-094214
提出了一种基于耦合介质纳米线的深亚波长局域波导,通过两根紧邻的高折射率介质纳米线的耦合,该波导可以将光场有效束缚在纳米线之间的低折射率纳米缝隙中. 计算模拟的结果表明,该波导的有效模场面积达到Λ20/200,比单根纳米线波导小一个数量级,这种深亚波长的模场束缚能力可以与表面等离激元混合波导相比拟. 计算模拟的结果还表明,纳米线可能带有的低折射率氧化膜、低折射率衬底的存在、以及纳米线间尺寸存在的一定差异对于该波导结构的实际应用都不会产生很大 关键词: 介质波导 亚波长局域 表面等离激元波导 纳米线  相似文献   

4.
A hybrid optical waveguide having a 90° sharp bend structure, composed of a dielectric straight waveguide, tapered dielectric strip waveguide, and microscale metal gap waveguide, is proposed and simulated to improve the efficiency of light coupling between dielectric and plasmonic waveguides. Our simulation result is a critical step for the hybrid integration of plasmonic components with conventional dielectric components.  相似文献   

5.
Li Q  Song Y  Zhou G  Su Y  Qiu M 《Optics letters》2010,35(19):3153-3155
Asymmetric directional coupling between a hybrid plasmonic waveguide with subwavelength field confinement and a conventional dielectric waveguide is investigated. The proposed hybrid coupler features short coupling length, high coupling efficiency, high extinction ratio, and low insertion loss; it can also be integrated into a silicon-based platform. This coupler can be potentially adopted for signal routing between plasmonic waveguides and dielectric waveguides in photonic integrated circuits. Furthermore, it can be exploited to efficiently excite hybrid plasmonic modes with conventional dielectric modes.  相似文献   

6.
It has been experimentally demonstrated that a low-loss guided hybrid mode is supported if a metal strip is embedded in a low index polymer layer surrounded by two high index slabs. In this paper, further numerical analyses on the guided hybrid modes are reported to fully elucidate the characteristics of the hybrid plasmonic waveguide. For a one-dimensional slab structure with a metal film of infinite width, simulation results exhibit that low-loss guided hybrid modes are associated with surface plasmon modes and dual dielectric slab modes. The optical properties of the guided modes are improved by increasing the field intensity which is confined into lossless dielectric layers by decreasing the metal film thickness and increasing the refractive index and thickness of the high-index slabs. The finite element method is used to investigate the lateral mode confinement of the optical guided modes by the corresponding metal strip. By reducing the metal film width, the guided modes are confined in the plane transverse to the direction of propagation and the characteristics are significantly improved. The hybrid plasmonic waveguide can be exploited for long-range propagation-based application such as optical interconnection.  相似文献   

7.
黄洪  赵青  焦蛟  梁高峰  黄小平 《物理学报》2013,62(13):135201-135201
本文提出了一种新颖的基于半导体纳米线/空气间隙/金属薄膜 复合结构的表面等离子体纳米激光器, 并给出了理论研究和仿真分析. 这种结构通过金属界面的表面等离子体模式与高增益介质纳米线波导模式耦合, 从而使场增强效应得到显著提高. 同时通过数值仿真研究, 得到该混合波导结构的模式特性和增益阈值随空气槽宽度、纳米线半径的变化规律, 表明它可以实现对输出光场的深亚波长约束, 同时保持低损耗传输和高场强限制能力. 通过最优化选择, 最终得到纳米等离子体激光器的最优结构尺寸. 关键词: 表面等离子体 混合等离子体波导 纳米激光器  相似文献   

8.
屠林林  张弛  黄忠  詹鹏  Jason Yau  王振林 《中国物理 B》2016,25(9):97302-097302
Herein,we propose a high-quality(Q) factor hybrid plasmonic nanocavity based on distributed Bragg reflectors(DBRs) with low propagation loss and extremely strong mode confinement.This hybrid plasmonic nanocavity is composed of a high-index cylindrical nanowire separated from a metal surface possessing shallow DBRs gratings by a sufficiently thin low-index dielectric layer.The hybrid plasmonic nanocavity possesses advantages such as a high Purcell factor(Fp) of up to nearly 20000 and a gain threshold approaching 266 cm~(-1)at 1550 nm,promising a greater potential in deep sub-wavelength lasing applications.  相似文献   

9.
Wu Z  Nelson RL  Haus JW  Zhan Q 《Optics letters》2008,33(6):551-553
A plasmonic electro-optic modulator design using an evanescently coupled resonant metal grating is numerically studied in this Letter. Owing to excitation and propagation of long-range surface plasmons between the metal grating nanowires, a deep and narrow reflection dip can be obtained. Improved modulation performance is achieved through decreased damping from large dielectric gaps between the grating nanowires. An optimized electro-optic modulator design with lower insertion loss and low operating voltage is presented.  相似文献   

10.
For development of complementary metal–oxide–semiconductor (CMOS)-compatible integrated optical circuits, vertical directional coupling between a hybrid plasmonic slot waveguide and a Si waveguide is theoretically investigated in detail. To determine the vertical separation gap and efficient coupling length, we investigate the characteristics of the even and odd supermodes at a wavelength of 1.55 μm. The vertical coupler transfers 90% of the power carried by the Si waveguide to the hybrid plasmonic slot waveguide after normalizing to reference waveguides when the gap is 60 nm and the coupling length is 2.6 μm. Because of the lossy hybrid guided mode in the plasmonic waveguide, the transmitted power exhibits damped sinusoidal behavior depending on the overlapping length. The proposed vertical coupler shows more efficient light coupling between a dielectric and plasmonic waveguide in comparison to the other types of hybrid coupler, and can be exploited further for on-chip integrated opto-electronic circuits.  相似文献   

11.
A class of axially uniform waveguides is introduced, employing a new mechanism to guide light inside a low-index dielectric material without the use of photonic band gap, and simultaneously exhibiting subwavelength modal size and very slow group velocity over an unusually large frequency bandwidth. Their basis is the presence of plasmonic modes on the interfaces between dielectric regions and the flat unpatterned surface of a bulk metallic substrate. These novel waveguides allow for easy broadband coupling and exhibit absorption losses limited only by the intrinsic loss of the metal.  相似文献   

12.
A numerical investigation of nonlinear switching in plasmonic directional couplers made of two dielectric slab waveguides with metallic claddings is presented. We assume Kerr-nonlinear dielectric and study the influence of geometrical parameters, metallic losses, and metal nonlinearities on coupler characteristics. We observe a general trade-off between losses and nonlinearity levels required for the switching operation. Underlying physical mechanisms that affect the coupler performance are discussed. The obtained results can be useful in design and optimization of the nonlinear plasmonic couplers.  相似文献   

13.
We present a novel design and analysis of two nano-scale plasmonic devices: a directional coupler and a Mach–Zehnder interferometer. The designs of the two devices are based on our recent work on the air-gap coupler that resulted in high coupling efficiency between a dielectric waveguide and a plasmonic waveguide. The two devices are embedded between two dielectric waveguides and operate at optical telecom wavelengths. The overall efficiency was 37% for a 2×2 directional coupler switch and above 50% for the proposed designs for a Mach–Zehnder Interferometer. The efficiency in the proposed devices can be increased using broader plasmonic waveguides.  相似文献   

14.
Plasmonic waveguides and conventional dielectric waveguides have favorable characteristics in photonic integrated circuits. Typically, plasmonic waveguides can provide subwavelength mode confinement, as shown by their small mode area, whereas conventional dielectric waveguides guide light with low loss, as shown by their long propagation length. However, the simultaneous achievement of subwavelength mode confinement and low-loss propagation remains limited. In this paper, we propose a novel design of an alldielectric bowtie waveguide, which simultaneously exhibits both subwavelength mode confinement and theoretically lossless propagation. Contrary to traditional dielectric waveguides, where the guidance of light is based on total internal reflection, the principle of the all-dielectric bowtie waveguide is based on the combined use of the conservation of the normal component of the electric displacement and the tangential component of the electric field, such that it can achieve a mode area comparable to its plasmonic counterparts. The mode distribution in the all-dielectric bowtie waveguide can be precisely controlled by manipulating the geometric design. Our work shows that it is possible to achieve extreme light confinement by using dielectric instead of lossy metals.  相似文献   

15.
A new type of a coaxial multi-layer plasmonic waveguide is proposed. The mode propagation properties are analyzed at the communication working wavelength. Theoretical investigations reveal that the enhanced optical confinement can be achieved in the two low-index dielectric media layers. The mode size can be sub- or deep sub-wavelength scale. The mode propagation loss can be well compensated by replacing the high-index dielectric media with gain material to achieve longer propagation length with better mode confinement. The comparisons of the mode properties between the proposed waveguide and waveguides studied in the published literatures are also considered. These investigations potentially lay the groundwork for the further applications of nanowire type multilayer hybrid structures. This structure could also enable various applications such asnanophotonic waveguides, high-quality nanolasers, and optical trapping and biosensors.  相似文献   

16.
Surface plasmons at the metal–dielectric interface have emerged as an important candidate to propagate and localize light at subwavelength scales. By tailoring the geometry and arrangement of metallic nanoarchitectures, propagating and localized surface plasmons can be obtained. In this brief perspective, we discuss: (1) how surface plasmon polaritons (SPPs) and localized surface plasmons (LSPs) can be optically excited in metallic nanoarchitectures by employing a variety of optical microscopy methods; (2) how SPPs and LSPs in plasmonic nanowires can be utilized for subwavelength polarization optics and single-molecule surface-enhanced Raman scattering (SERS) on a photonic chip; and (3) how individual plasmonic nanowire can be optically manipulated using optical trapping methods.  相似文献   

17.
We study the properties of electromagnetic waves propagating along the waveguides with a periodic core created by alternating metal and dielectric layers, the so-called quasi-one-dimensional plasmonic crystal waveguides. Such waveguides can be symmetric or asymmetric, depending on the cladding or substrate material properties, as well as on the termination of the periodic structure. We analyze the dispersion characteristics as well as the profiles of the guided modes for several types of waveguide structure.  相似文献   

18.
Zhu N  Mei T 《Optics letters》2012,37(10):1751-1753
In this letter, we propose and analyze an ultra-compact wavelength filter on silicon-based hybrid plasmonic waveguides, which confines light in a nanometeric silica dioxide layer between the silicon substrate and metal cap. The filter consists of a stub structure coupled to a straight waveguide. The three-dimensional finite-difference time-domain (FDTD) method is applied to calculate the spectral responses of such devices. Similar resonant behaviors are obtained since those devices are based on two-dimensional Metal-Insulator-Metal waveguide structure. Results also show that by adding stubs and tuning the distance between stubs can further improve the device's performance and shape the spectral response to some extent.  相似文献   

19.
A hybrid optical waveguide with a \(90^{\circ }\) sharp bend comprising a dielectric straight waveguide, a tapered dielectric strip waveguide, and a microscale metal gap waveguide is proposed, modeled, fabricated, and characterized with the aim of improving the efficiency of light coupling between the dielectric and plasmonic waveguides. The simulation result using the full-vector finite-difference time domain shows a total transmissivity of about 63 % at a wavelength of 1,550 nm. A set of hybrid optical waveguide with a \(90^{\circ }\) bend is fabricated via the two-step photolithography and a metal lift-off process. From the measured result for the characteristics of the fabricated hybrid optical waveguide, the transmission loss was estimated to be about 17 dB, which is in stark contrast with the simulation value. Nevertheless, such a novel coupling scheme may be of potential use in high-density photonic integration applications.  相似文献   

20.
Although silver nanowires as plasmonic components have been investigated extensively in both theoretical and experimental studies, a systematic study is still lacking. In this work, a review is given to explain some basic features of experimentally prepared nanowires and their optical properties in different situations, such as waveguides, resonators, and antennas. The review also lists several possible applications of nanowires for enhanced light‐emitting, photonic device fabrication, sensors, lasers, and nonlinear optics. Combined with the merits of both nanowires and surface plasmon polaritons, silver nanowires are certain to show their potential in photonics in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号