首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
We present a multi-wavelength mode-locked fiber ring laser incorporating a semiconductor optical amplifier (SOA) and a Fabry-Perot semiconductor optical amplifier (FP-SOA). Because the gain of the SOA is depleted by an external injection optical signal, the SOA acts as a loss modulator. The FP-SOA serves as a tunable comb filter. The presented laser source can generate 19 synchronized wavelength channels with the extinction ratio of about 21 dB, each mode-locked at 10 GHz, and mode-locked pulse width is about 40 ps. Oscillation wavelengths band can be tuned by adjusting the bias current of the SOA, and wavelength spacing also can be changed by using a tunable optical delay line (ODL) or a temperature controller. The polarization-insensitive devices ensure that the output power is rather stable. This fiber laser has potential applications in longer waveband (L-band) within the low-attenuation window.  相似文献   

2.
An actively mode-locked fiber ring laser based on cross-gain modulation (XGM) in a semiconductor optical amplifier (SOA) is demonstrated to operate stably with a simple configuration. By forward injecting an easily-generated external pulse train, the mode-locked fiber laser can generate an optical-pulse sequence with pulsewidth about 6 ps and average output power about 7.9 mW. The output pulses show an ultra-low RMS jitter about 70.7 fs measured by a RF spectrum analyzer. The use of the proposed forward-injection configuration can realize the repetition-rate tunability from 1 to 15 GHz for the generated optical-pulse sequences. By employing a wavelength-tunable optical band-pass filter in the laser cavity, the operation wavelength of the designed SOA-based actively mode-locked fiber laser can be tuned continuously in a wide span between 1528 and 1565 nm. The parameters of external-injection optical pulses are studied experimentally to optimize the mode-locked fiber laser.  相似文献   

3.
A Mach–Zehnder interferometer (MZI) which is used as a wavelength-spacing tunable comb filter in a fiber ring laser is built by employing an optical variable delay line (OVDL). Stable multi-wavelength semiconductor optical amplifier (SOA)-fiber ring laser based on an SOA and the MZI comb filter is achieved. Wavelength spacing can be continuously tuned by adjusting the OVDL and, as an example, multi-wavelength lasing with the wavelength spacing of 0.4, 0.8, or 1.6 nm is demonstrated. The output of the proposed multi-wavelength SOA-fiber ring laser is quite stable at room temperature and the output spectrum can be adjusted by controlling the bias current of the SOA.  相似文献   

4.
We demonstrate a multi-wavelength semiconductor optical amplifier (SOA) fiber ring laser with a dual-pass Mach-Zehnder interferometer (MZI) filter. Two SOAs with different gain spectra provide sufficient gain and a wider gain spectrum to facilitate multi-wavelength lasing. The dual-pass MZI, configured by adding an optical isolator to the two outputs of the conventional MZI, serves as comb filter for multi-wavelength operation, and its extinction ratio can be enhanced to twofold as that of the conventional MZI in the same parameters. To investigate the influences of a dual-pass MZI filter and a conventional MZI filter on multi-wavelength operation, two different cavity configurations are presented and compared, including a single-SOA ring cavity and a double-SOA ring cavity. Stable simultaneous operation at 82 wavelengths, with a wavelength spacing of 40 GHz and a power deviation of 5 dB, and with a minimum optical signal-to-noise ratio (OSNR) of 28 dB, is observed from the double-SOA ring cavity using a dual-pass MZI filter.  相似文献   

5.
D. Liu  N.Q. Ngo  D. Liu 《Optics Communications》2009,282(8):1598-5360
We experimentally demonstrated a new structure of a multiwavelength semiconductor optical amplifier (SOA) ring laser based on a fiber Sagnac loop filter that can generate up to 25 stable output lasing wavelengths at room temperature. By varying the length of a polarization-maintaining (PM) fiber within the Sagnac loop filter, the wavelength spacing between the output lasing wavelengths can be changed to a desired value. By tuning a polarization controller (PC) within the Sagnac loop filter, stable multiwavelength 1550-nm operation with up to 17 lasing lines within 3 dB power level variation and with a wavelength spacing of ∼0.8 nm was achieved. The optical signal-to-noise ratios (OSNRs) of all the lasing wavelengths are greater than 40 dB.  相似文献   

6.
A multiwavelength fiber ring laser that is based on an S-band erbium-doped fiber amplifier (EDFA) and a semiconductor optical amplifier (SOA) is developed. An optical switch is used to switch the multiwavelength fiber laser between S-band and L-band. This fiber laser can stably lase seven wavelengths in the S-band or 28 wavelengths in the L-band. Additionally, the lasing wavelengths with a signal-to-noise ratio of over 33 dB and a wavelength spacing of 100 GHz are demonstrated experimentally. The average powers of the lasing wavelength in the S-band and the L-band are −7.53 and −12.15 dBm, respectively.  相似文献   

7.
A multiwavelength actively mode-locked fiber ring laser that utilises a single semiconductor optical amplifier as both a gain and mode-locking element is presented. It is verified experimentally that the number of mode-locked wavelengths may be maximised by compensating for the anomalous intra-cavity dispersion. This is achieved through the inclusion of an appropriate length of normal dispersion fiber in the laser cavity. Using this technique, the number of wavelengths simultaneously mode-locked at 10 GHz was increased from 2 to 5.  相似文献   

8.
Chen H 《Optics letters》2005,30(6):619-621
A multiwavelength fiber ring laser obtained by use of a semiconductor optical amplifier (SOA) with a simple laser cavity configuration is reported. A Fabry-Perot filter was used in the fiber laser ring cavity to achieve more than 50 simultaneous wavelength lasing oscillations with a frequency separation of 50 GHz. The resulting stable broadband multiwavelength lasing operation was attributed to broadband and flat gain of the SOA, which has a gain flatness of 0.8 dB for more than 20 nm. The laser has a total output power of -3 dBm and a signal-to-spontaneous-noise ratio of 30 dB.  相似文献   

9.
A multiwavelength fiber ring laser comprising of a Lyot filter and hybrid gain medium is presented. A wavelength channel spacing of 100 GHz is achieved by appropriate tuning of the Lyot filter length. Four wavelength channels are simultaneously mode-locked at 10 GHz using an electroabsorption modulator. We highlight how the intra-cavity modulator can affect the stability of the mode-locked laser spectrum when used in conjunction with a Lyot filter. We show that, due its reduced polarization sensitivity, an electroabsorption modulator significantly improves the stability of the mode-locked laser spectrum when compared to using a Mach-Zehnder modulator.  相似文献   

10.
邓己媛  张新亮  余宇 《光子学报》2007,36(7):1299-1301
提出了一种基于半导体光放大器加窄带光纤光栅滤波器,将非归零信号转换为伪归零信号,再把伪归零信号注入到主动锁模环行腔激光器进行时钟提取的非归零信号时钟恢复方案.利用该方案实现了10 Gb/s伪随机非归零信号的全光时钟恢复,对工作原理和结果进行了分析和讨论.实验证明该方案具有结构简单,调整容易,输出波形好的特点.  相似文献   

11.
We demonstrate the generation of 10-GHz optical square pulses by injecting a picosecond pulse train into an SOA-based mode-locked fiber laser. The novel scheme exploits nonlinear effects and gain saturation phenomenon in the semiconductor optical amplifier (SOA). This technique uses gain-compression dynamics between the input pulses and the generated ones in gain-saturated SOA to form square pulses. The center wavelength of the generated optical square pulse can be tuned from 1530 to 1570 nm by adjusting the center wavelength of the optical band pass filter (OBPF) in the SOA-based mode-locked fiber ring laser. The duty cycle of the output pulse can be tuned from 12.7 to 88.4%, which strongly depends on the input power and intra-cavity power.  相似文献   

12.
A 40-GHz wavelength tunable mode-locked fiber ring laser based on cross-gain modulation in a semiconductor optical amplifier (SOA) is presented. Pulse trains with a pulse width of 10.5 ps at 40-GHz repetition frequency are obtained. The laser operates with almost 40-nm tuning range. The relationship between the key laser parameters and the output pulse characteristics is analyzed experimentally.  相似文献   

13.
All-optical clock recovery (CR) from 20 Gbit/s nonreturn-to-zero differential phase-shift-keying (NRZ-DPSK) signals are demonstrated experimentally by using a polarization-maintaining fiber loop mirror filter (PMF-LMF) and a semiconductor optical amplifier (SOA) fiber ring laser. Only by adjusting polarization controller (PC), NRZ-DPSK signals were conveniently and fast converted to pseudo return-to-zero (PRZ) signal via PMF-LMF. Then the PRZ signals are injected into the SOA fiber laser for CR. The recovered clock signals is with the extinction ratio (ER) of 10 dB and the root-mean-square (RMS) timing jitter of 750 fs in 231 − 1 long pseudorandom binary sequence (PRBS) NRZ-DPSK signals measurement. Moreover, the broad wavelength tunability of recovered clock stemmed from the use of SOAs as modulator and the gain medium are shown too.  相似文献   

14.
A novel actively and passively mode-locked semiconductor optical amplifier fiber ring laser was presented, where semiconductor optical amplifier provided cavity gain and introduced nonlinear polarization rotation, whereas, intensity modulator not only acted as modulator but also polarizer. The pulses with duration below 3 ps (FWHM) and peak power about 16 mW at a repetition rate of 10 GHz can be obtained in our system and the system stability may be enhanced. To investigate system parameters effects on mode-locked pulses, a theoretical model was developed.  相似文献   

15.
All-optical clock extraction from a 10-Gbit/s NRZ-DPSK input signal is demonstrated using modal interference in a two-mode fiber (TMF) and a mode-locked fiber ring laser. The TMF has a Mach-Zehnder configuration with two arms along the core and cladding regions. Using the difference in propagation delay between two arms, the non-return-to-zero differential phase shift keying (NRZ-DPSK) signal is converted to the return-to-zero on-off keying (RZ-OOK) signal. To obtain repetitive pulses as a clock signal from the RZ-OOK signal, a ring laser with a semiconductor optical amplifier (SOA) is used. Subsequently, the carrier-to-noise ratio (CNR) of the RZ-OOK and clock signals are enhanced up to 30 dB and 40 dB, respectively, compared to that of the original NRZ-DPSK signal. Also, the clock signal centered at 10 GHz has a low timing jitter of <1.6 ps. It is expected that this method can be applied to high speed fiber-optic systems of >10 Gbit/s due to its small time delay between the core and cladding regions.  相似文献   

16.
We demonstrate a multiwavelength 10 GHz pulse source using a dispersion-tuned actively mode-locked fiber ring laser incorporated with a semiconductor optical amplifier and an erbium-doped fiber amplifier. Simultaneous seven-wavelength operation of the laser is obtained. The side-mode suppression of all wavelengths is above 30 dB. Smooth wavelength tuning is achieved over more than 12 nm by changing the modulation frequency or the length of the optical delay line. Pulse characteristics are almost constant over the entire tuning span. Wavelength spacing can also be varied from 0.9 to 10 nm by adjusting the dispersion of the cavity. These experimental observations agree well with theoretical analyses.  相似文献   

17.
This investigation demonstrates a stable multiwavelength fiber ring laser with ultra-narrow wavelength spacing using a semiconductor optical amplifier (SOA). A delay interferometer and a mirror are used as a double-pass interferometer to improve the signal-to-noise ratio in this experiment. Up to 181 stable lasing wavelengths with a wavelength spacing of 10.7 GHz and a signal-to-noise ratio of over 24 dB are produced at room temperature.  相似文献   

18.
Optical clock division and multiplication were realized with an injection mode-locked fiber ring laser based on semiconductor optical amplifier SOA owing to the relatively long recovery time of carriers in SOA and the rational harmonic mode-locking. Second frequency division and 1.5th frequency multiplication of 10 GHz, second and th frequency division of 20 GHz optical pulse trains were realized, respectively, in the experiment.  相似文献   

19.
We demonstrate a fiber ring laser with a dispersion compensation fiber (DCF) and a delayed interferometer (DI) with temperature control, which is able to switch eleven wavelengths one by one. In ring cavity, DCF supplies different effective cavity lengths for different wavelengths, DI generates a wavelength comb corresponding to the ITU grid, a flat-gain erbium-doped fiber amplifier (EDFA) provides uniform gain for each lasting wavelength, and a semiconductor optical amplifier (SOA) not only acts as active modulator, but also alleviates homogeneous broadening effect of EDFA. Stable pulse trains with a pulsewidth about 40 ps at 10 GHz have been obtained by injecting external optical control signals into the laser. Wavelength switching process among eleven wavelengths is achieved by merely tuning an intracavity optical delay line.  相似文献   

20.
A simple switchable and tunable dual-wavelength passively mode-locked erbium-doped fiber ring laser based on nonlinear polarization rotation (NPR) effect is proposed and experimentally demonstrated. The NPR effect effectively induces wavelength- and intensity-dependent loss to readily implement stable dual-wavelength passively mode-locked operation. The wavelength switching and tuning of the dual-wavelength ultrashort pulse laser are achieved only by appropriately rotating the polarization controllers. The side-mode suppression ratio of the output pulse is larger than 41 dB over a wavelength-tuning range of 43.4 nm. Moreover, triple-wavelength ultrashort pulse can also be observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号