首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transparent crystals of novel non-linear optical material comprising of glycine sodium-zinc sulfate (GSZS) have been grown in our laboratory from solution by slow evaporation technique. Transparent crystals of dimensions (8 × 7 × 4 mm3) have been obtained in 3-4 weeks time. The solubility in water shows linear variation in temperatures range from 300 K to 350 K. The GSZS crystal exhibits orthorhombic symmetry with a = 5.418 A.U., b = 6.084 A.U and c = 3.497 A.U. The intense XRD peak is found at 25.43°. The presence of functional groups has been studied by FTIR analysis and verified by laser Raman spectra. Lower cutoff wavelength and enhanced transparency window with a typical energy gap of 5.85 eV are suggested by the UV measurements. The second harmonic generation (SHG) efficiency of GSZS is found to be 0.62 times than that of standard KDP using modified Kurtz and Perry technique. The GSZS crystal exhibits a normal dielectric behavior.  相似文献   

2.
A new nonlinear optical material glycine potassium sulphate (GPS) has been synthesized and optical quality crystals were grown from aqueous solution. This material has positive temperature coefficient revealed from the solubility studies. The grown crystals were characterized by employing several techniques such as single crystal and powder X-ray diffraction, thermo gravimetric analysis, FTIR and UV-vis-NIR spectra. The etching studies have been done on the (1 0 0) plane of the grown crystal. Preliminary measurements to find second harmonic generation efficiency of GPS has been carried out.  相似文献   

3.
Physical properties such as photoconductivity, dielectric and thermal stability have been investigated for pure benzoyl glycine (BG) crystals. In addition to this, the influence of dopants (benzophenone and iodine) of these properties on BG crystals has been studied. Photoconductivity studies on pure BG, benzophenone-and iodine-doped BG revealed the positive photoconducting nature. The dielectric responses of the samples have been studied in the frequency range 100 Hz-500 KHz at room temperature and the results are discussed in detail. The thermogravimetric studies of pure and doped BG crystals indicate that the presence of dopants has slightly increased the decomposition temperature of pure BG samples, thereby enhancing thermal stability to the doped ones.  相似文献   

4.
Single crystals of novel semiorganic material, potassium boro-succinate (KBS) have been grown from aqueous solution by slow evaporation technique. The lattice parameters for the grown crystals were determined by the single crystal X-ray diffraction analysis. The presence of functional groups was estimated qualitatively by using fourier transform infrared (FTIR) analysis. The optical absorption spectrum shows that the UV cut-off wavelength for the grown crystal is at 240 nm. The thermal stability of the KBS crystal was studied by using TG/DTA analysis. The dielectric constant and loss were studied as a function of frequency. Nonlinear optical properties (NLO) test was performed by using Kurtz powder technique.  相似文献   

5.
Transparent crystals of α-glycine with barium nitrate and calcium nitrate (GBC) have been grown from aqueous solution by slow evaporation technique at room temperature. Crystals of size 22 × 25 × 4 mm3 have been obtained in 3-4 weeks time. The solubility of GBC has been determined in water. The grown crystal belongs to orthorhombic system with cell parameters a = 12.7321 A.U, b = 13.7752 A.U and c = 8.6002 A.U with unit cell volume of 1508.36 (A.U)3. Comparative IR and Raman studies indicate a molecule with a lack of center of symmetry. A wide transparency window useful for optoelectronic applications is indicated by the UV Studies. Using Nd:YAG laser (1064 nm), the optical second harmonic generation (SHG) conversion efficiency of GBC is found to be 0.702 times than that of standard KDP. On exposure to light the GBC crystals exhibit positive photoconductivity. I-V characteristics, dielectrics studies, electrical and Vickers micro hardness measurement have been carried out. The GBC crystal exhibits more mechanical strength compared to the reported GSN crystals.  相似文献   

6.
Transparent crystals of α-glycine with sodium nitrate and barium nitrate (GSB) have been grown from aqueous solution by slow evaporation technique at room temperature. Crystals of size 11 × 7 × 4 mm3 have been obtained in 3-4 weeks time. The solubility of GSB has been determined in water. The grown crystal belongs to orthorhombic system with cell parameters a = 4.684 a.u., b = 12.184 a.u. and c = 10.969 a.u. with unit cell volume of 625.99 (a.u.)3. Comparative IR and Raman studies indicate a molecule with a lack of centre of symmetry. A wide transparency window useful for optoelectronic applications is indicated by the UV studies. Using Nd-YAG laser (1064 nm), the optical second harmonic generation (SHG) conversion efficiency of GSB is found to be 0.648 times that of standard KDP. On exposure to light the GSB crystals exhibit positive photoconductivity. I-V characteristics, dielectrics studies and Vickers micro hardness measurement have been carried out. The GSB crystal exhibits more mechanical strength compared to the reported GSN crystals.  相似文献   

7.
Surface morphology of {1 0 1} surfaces of l-arginine trifluoroacetate (LATF) crystals have been investigated by atomic force microscopy (AFM). The dominant growth mechanism of the LATF crystals is the formation and expansion of dislocation spirals. Rectangular dislocation growth hillocks oriented with their longer sides in the [0 1 0] direction, which indicates the fast growth along this direction. Apart from that, typical step morphologies are presented and discussed on the basis of the observations.  相似文献   

8.
We have grown organic nonlinear optical 4-methoxy benzaldehyde-N-methyl-4-stilbazolium tosylate (MBST) crystals by slow evaporation technique. The grown crystals were analyzed by powder XRD, FTIR, NMR, UV, Thermal, mechanical and dielectric measurements. Lattice parameters and crystallinity of the crystal is confirmed by the XRD studies. The FTIR and NMR studies give the details about the various functional groups present. In order to study the optical quality of the crystal, the UV-vis absorption spectrum was recorded and cut-off wavelength was determined. Melting point of the crystal is found from the differential scanning calorimetry. The powder SHG studies were done with the Kurtz powder technique and the NLO efficiency is 17.2 times greater than that of urea. The surface of the grown crystal was analyzed with etching. Laser damage threshold studies have been carried out for the crystal using a Q-switched Nd:YAG laser of 10 ns pulses.  相似文献   

9.
The effect of texture of iron foil substrate on the growth of hematite nanowires by annealing method has been investigated in detail. Three substrates of different textures were prepared from a [2 0 0] oriented iron foil by some simple processes. The hematite nanowires on these substrates were synthesized by annealing iron foil at 700 °C in moist oxygen. The growth pattern of nanowires on these substrates showed that the growth of hematite nanowires depends strongly on the iron substrate texture and [1 1 0] oriented iron grains are necessary for their growth. The samples were characterized by Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD), Electron Back Scatter Diffraction (EBSD) and Raman Spectroscopy. We have also tried to explain the various observations on the mechanism of growth. Mainly, the presence of water vapor significantly enhanced the formation of hematite nanowires which resulted in a very dense and aligned growth of nanowires on the substrate areas of favorable texture. Finally, the study proved the substrate texture to be a powerful tool to control growth of nanowires and can be used efficiently for patterning and large scale synthesis of the nanowires.  相似文献   

10.
Single crystals of glycine nitrate [(C2H6NO2)+ · (NO3)] were grown using submerged seed solution method. The crystals were characterized by using single crystal X-ray diffraction and density measurements. Spectroscopic, thermal and optical studies were carried out for analyzing the presence of the functional groups, thermal stability, decomposition and transparency of the sample. These studies showed that the crystals are thermally stable upto 145 °C and transparent for the fundamental and second harmonic generation of Nd:YAG (λ = 1064 nm) laser. Second harmonic generation (SHG) conversion efficiency was investigated to explore the NLO characteristics of this material. Microhardness and dielectric studies were also carried out.  相似文献   

11.
A potentially useful semi organic nonlinear optical (NLO) material ? glycine with barium nitrate and potassium nitrate (GBNPN) has been synthesized by slow evaporation technique. Good transparent GBNPN crystals were obtained in a time span of 3 weeks. The grown crystals were characterized by single crystal/powder XRD, UV?vis?IR absorption, FTIR, thermal analysis and powder SHG measurements have been studied. The grown crystals were thermally stable up to 137.53 °C. The GBNPN crystal exhibits second harmonic generation efficiency of about 1.35 times than that of potassium di hydrogen phosphate (KDP). Mechanical properties such as micro hardness (Hv) and Mayer's index, n, have been carried out by indentation method. The refractive index (μ) has been measured by the Brewster's angle method.  相似文献   

12.
We have investigated etch-pit formation on potassium dihydrogen phosphate (KDP) crystals with porous anti-reflective coatings. Etch pits develop beneath the sol–gel coatings after exposure to ambient humidity. The etch pits are homogeneously distributed with a density and an average size governed by the relative humidity and the coating thickness. Furthermore, the etch pits are self-similar in shape and possess facets corresponding to low-energy planes of KDP. Results from optical microscopy, light scattering, and atomic force microscopy support the following model for etch-pit formation in this system. Water adsorbed from the environment into the porous sol–gel coating contacts the crystal surface, causing etch-pit nucleation at high undersaturation. The plume of KDP rising from an etch pit slowly diffuses laterally, reducing the undersaturation and shutting off nucleation in the surrounding area. Because surface kinetics are rapid compared to mass transport through the sol–gel, etch pits continually undergo equilibration to maintain a low-energy geometry and generate an average spacing. Growth continues until the reservoir of water in the sol–gel is saturated with KDP. Coarsening is only observed in high relative humidity environments. Received: 13 Juni 2001 / Accepted: 30 July 2001 / Published online: 30 October 2001  相似文献   

13.
The laser etching using a surface adsorbed layer (LESAL) is a new method for precise etching of transparent materials with pulsed UV-laser beams. The influence of the processing parameters to the etch rate and the surface roughness for etching of fused silica, quartz, sapphire, and magnesium fluoride (MgF2) is investigated. Low etch rates of 1 nm/pulse and low roughness of about 1 nm rms were found for fused silica and quartz. This is an indication that different structural modifications of the material do not affect the etching significantly as long as the physical properties are not changed. MgF2 and sapphire feature a principal different etch behavior with a higher etch rate and a higher roughness. Both incubation effects as well as the temperature dependence of the etch rate can be interpreted by the formation of a modified near surface region due to the laser irradiation. At repetition rates up to 100 Hz, no changes of the etch rate have been observed at moderate laser fluences.  相似文献   

14.
The laser-induced backside wet etching (LIBWE) is an advanced laser processing method used for structuring transparent materials. LIBWE with nanosecond laser pulses has been successfully demonstrated for various materials, e.g. oxides (fused silica, sapphire) or fluorides (CaF2, MgF2), and applied for the fabrication of microstructures. In the present study, LIBWE of fused silica with mode-locked picosecond (tp = 10 ps) lasers at UV wavelengths (λ1 = 355 nm and λ2 = 266 nm) using a (pyrene) toluene solution was demonstrated for the first time. The influence of the experimental parameters, such as laser fluence, pulse number, and absorbing liquid, on the etch rate and the resulting surface morphology were investigated. The etch rate grew linearly with the laser fluence in the low and in the high fluence range with different slopes. Incubation at low pulse numbers as well as a nearly constant etch rate after a specific pulse number for example were observed. Additionally, the etch rate depended on the absorbing liquid used; whereas the higher absorption of the admixture of pyrene in the used toluene enhances the etch rate and decreases the threshold fluence. With a λ1 = 266 nm laser set-up, an exceptionally smooth surface in the etch pits was achieved. For both wavelengths (λ1 = 266 nm and λ2 = 355 nm), LIPSS (laser-induced periodic surface structures) formation was observed, especially at laser fluences near the thresholds of 170 and 120 mJ/cm2, respectively.  相似文献   

15.
Large single crystals of La2−xSrxCuO4 (LSCO) high-Tc superconductors were grown by the infrared heating floating zone (IR-FZ) method using a tilting-mirror-type image furnace. The maximum diameter of the LSCO crystals increased to 10 mm in the tilting-mirror-type image furnace from 6 mm in the conventional image furnace. CuO rich feeds were required for the crystal growth using the tilting-mirror-type image furnace to compensate for the lack of CuO caused by the significant evaporation of CuO during the growth. The evaporation of CuO was affected by the tilting angle of the mirrors of the image furnace and by feed diameter. The optimized growth conditions were as follows: mirror tilting angle, 20°; feed diameter, 10 mm∅; and feed composition 50.7 mol% CuO.  相似文献   

16.
Urea-succinic acid crystals have been grown at room temperature from aqueous solution in the presence of maleic acid by a slow evaporation technique. The structural parameters were determined using powder X-ray diffraction (XRD) and found to have monoclinic symmetry (space group P21/m) with a=9.902, b=17.510, c=5.555 Å and α=γ=90°, β=96.46°. The transparency and optical analysis were carried out using UV-vis analysis. The optical band gap is found to be 4.71 eV. The presence of various functional groups was confirmed by FTIR analysis. The samples have shown piezoelectric behavior with a fairly good piezoelectric charge coefficient (d33) of 5 pC/N, when it is poled at 7 kV/cm. The hysteresis loop was plotted and the remnant polarization and coercive field were found to be 2.8 μC/cm2 and 4 kV/cm, respectively. The dielectric analysis was carried out as a function of temperature at various frequencies and the results were also discussed.  相似文献   

17.
Natural n-type PbS single crystals have been studied using AFM, STM and STS after long-term oxidation in air at ambient temperatures and extensive etching in aqueous acid solutions, in contrast to previous work devoted to initial corrosion of fresh surfaces. The exposure of PbS to atmosphere at high relative humidity for several days yields widespread loose oxidation products; the process is much slower at low humidity. Surface morphologies diverge after the treatment in 1 M perchloric and hydrochloric acid solutions at room temperature and become widely different at elevated temperatures, displaying commonly etch pits up to several micrometers in size and depth along with rather uniformly distributed 20-100 nm protrusions of PbS phase. The changes both in topography and semiconducting properties of PbS found by tunneling spectroscopy have been explained in terms of the non-uniform distribution of donor- and acceptor-type defects D+/D in the metal depleted surface layer, which are generated by chemical reactions and, in turn, determine the rates of the PbS corrosion. In particular, the D centers exhibit a self-catalyzing effect on the non-oxidative local dissolution of PbS in HCl media, resulting in the deep etch pits.  相似文献   

18.
Zinc indium selenide (ZnIn2Se4) thin films have been deposited onto amorphous and fluorine doped tin oxide (FTO)-coated glass substrates using a spray pyrolysis technique. Aqueous solution containing precursors of Zn, In, and Se has been used to obtain good quality deposits at different substrate temperatures. The preparative parameters such as substrate temperature and concentration of precursors solution have been optimized by photoelectrochemical technique and are found to be 325 °C and 0.025 M, respectively. The X-ray diffraction patterns show that the films are nanocrystalline with rhombohedral crystal structure having lattice parameter a=4.05 Å. The scanning electron microscopy (SEM) studies reveal the compact morphology with large number of single crystals on the surface. From optical absorption data the indirect band gap energy of ZnIn2Se4 thin film is found to be 1.41 eV.  相似文献   

19.
Magnesium oxide (MgO) nano-size powder is synthesized using magnesium nitrate hexahydrate and oxalic acid as precursors with ethanol as a solvent. The process involves gel formation, drying at 100 °C for 24 h to form magnesium oxalate dihydrate [α-MgC2O4·2H2O] and its decomposition at 500, 600, 800, and 1000 °C for 2 h to yield MgO powder (average crystallite size ∼6.5-73.5 nm). The sol-gel products at various stages of synthesis are characterized for their thermal behaviour, phase, microstructure, optical absorption, and presence of hydroxyl and other groups like OCO, CO, C-C, etc. MgO powder is shown to possess an f.c.c. (NaCl-type) structure with lattice parameter increasing with decrease in crystallite size (tav); typical value being ∼4.222(2) Å for tav∼6.5 nm as against the bulk value of 4.211 Å. Infrared absorption has shown MgO to be highly reactive with water. Also, a variety of F- and M-defect centres found in MgO produce energy levels within the band gap (7.8 eV), which make it attractive for application in plasma displays for increasing secondary electron emission and reducing flickering effects. The possible application of the intermediate sol-gel products, viz., α-MgC2O4·2H2O and anhydrous magnesium oxalate (MgC2O4) in understanding the plants and ESR dosimetry, respectively, has also been suggested.  相似文献   

20.
We present a technique for high pressure and high temperature deformation experiment on single crystals, using the Deformation-DIA apparatus at the X17B2 beamline of the NSLS. While deformation experiments on polycrystalline samples using D-DIA in conjunction with synchrotrons have been previously reported, this technical paper focuses on single crystal application of the technique. Our single crystals are specifically oriented such that only [1 0 0] slip or [0 0 1] slip in (0 1 0) plane is allowed. Constant applied stress (sigma <300 MPa) and specimen strain rates were monitored using in situ time-resolved X-ray diffraction and radiography imaging, respectively. Rheological properties of each activated slip system in the crystals can be revealed using this technique. In this paper, we describe the principle of sample preparation (e.g. [1 1 0]c and [0 1 1]c orientations) to activate specific slip systems (i.e. [1 0 0](0 1 0) and [0 0 1](0 1 0), respectively), stress measurement and procedures of the deformation experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号