首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We have explicitly identified coloured conical emission (CCE) and noncollinear optical parametric generation (OPC) by spectrum characterizations. With an experimental setup providing different pump pulse durations, CCE and noncollinear OPG are observed both alternatively and simultaneously. Comparisons between CCE and noncollinear OPC are studied. Accumulation behaviour of modulational instabilities is observed in our two-crystal cascaded configuration, which results in enhancement or depression of the CCE formation.  相似文献   

2.
A mere few decades ago, culture was thought a unique human attribute. Evidence to the contrary accumulated through the latter part of the twentieth century and has exploded in the present one, demonstrating the transmission of traditions through social learning across all principal vertebrate taxa and even invertebrates, notably insects. The scope of human culture is nevertheless highly distinctive. What makes our cultural capacities and their cognitive underpinnings so different? In this article I argue that in behavioural scientists' endeavours to answer this question, fruitful research pathways and their ensuing discoveries have come to exist alongside popular, yet in the light of current empirical evidence, highly questionable scenarios and even scientific blind alleys. I particularly re-evaluate theories that rely on the centrality of a supposed uniquely human capacity for imitative copying in explaining the distinctive capacity for massive cumulative cultural evolution (CCE) in our species. The most extreme versions of this perspective suffer logical incoherence and severe limits on scientific testability. By contrast the field has generated a range of rigorous observational and experimental methodologies that have revealed both long-term cultural fidelity and limited forms of CCE in non-human species. Attention now turns to directly investigating the scope, limits and underlying cognition of non-human versus human CCE, with a broader approach to factors additional to cultural transmission, notably the role of invention, innovation and evolved motivational biases underlying the scope of CCE in the species studied.  相似文献   

3.
Motivated by the need for chemical strategies designed to tune peptide fragmentation to selective cleavage reactions, benzyl ring substituent influence on the relative formation of carbocation elimination (CCE) products from peptides with benzylamine-derivatized lysyl residues has been examined using collision-induced dissociation (CID) tandem mass spectrometry. Unsubstituted benzylamine-derivatized peptides yield a mixture of products derived from amide backbone cleavage and CCE. The latter involves side-chain cleavage of the derivatized lysyl residue to form a benzylic carbocation [C(7)H(7)](+) and an intact peptide product ion [(MH(n))(n+) - (C(7)H(7))(+)]((n-1)+). The CCE pathway is contingent upon protonation of the secondary ε-amino group (N(ε)) of the derivatized lysyl residue. Using the Hammett methodology to evaluate the electronic contributions of benzyl ring substituents on chemical reactivity, a direct correlation was observed between changes in the CCE product ion intensity ratios (relative to backbone fragmentation) and the Hammett substituent constants, σ, of the corresponding substituents. There was no correlation between the substituent-influenced gas-phase proton affinity of N(ε) and the relative ratios of CCE product ions. However, a strong correlation was observed between the π orbital interaction energies (ΔE(int)) of the eliminated benzylic carbocation and the logarithm of the relative ratios, indicating the predominant factor in the CCE pathway is the substituent effect on the level of hyperconjugation and resonance stability of the eliminated benzylic carbocation. This work effectively demonstrates the applicability of σ (and ΔE(int)) as substituent selection parameters for the design of benzyl-based peptide-reactive reagents which tune CCE product formation as desired for specific applications.  相似文献   

4.
尹娟娟  俞侃  包佳祺 《光子学报》2014,40(9):1376-1380
实验研究了飞秒脉冲激光泵浦I类BBO晶体中自发参量下转换效应,以及产生的彩色锥形辐射现象.系统分析了各参量对二次谐波转换效率及彩色锥形辐射现象的影响.研究结果表明:蓝绿色锥形辐射具有最大的发散角,这与相位匹配理论模拟结果吻合|正入射时,增大泵浦光强及晶体厚度均会引起彩色锥形辐射亮度增加,且最大出射角中心波长往长波移动|不同光束偏振态下可依次观察到彩色锥形辐射、超连续现象.  相似文献   

5.
In order to evaluate the charge collection efficiency (CCE) profile of single‐crystal diamond devices based on a p‐type/intrinsic/metal configuration, a lateral Ion Beam Induced Charge (IBIC) analysis was performed over their cleaved cross sections using a 2 MeV proton microbeam. CCE profiles in the depth direction were extracted from the cross‐sectional maps at variable bias voltage. IBIC spectra relevant to the depletion region extending beneath the frontal Schottky electrode show a 100% CCE, with a spectral resolution of about 1.5%. The dependence of the width of the high efficiency region from applied bias voltage allows the constant residual doping concentration of the active region to be evaluated. The region where the electric field is absent shows an exponentially decreasing CCE profile, from which it is possible to estimate the diffusion length of the minority carriers by means of a drift–diffusion model. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Application of current-carrying elements (CCEs) made of second-generation high-temperature superconductor (2G HTS) in magnet systems of a fusion neutron source (FNS) and other fusion devices will allow their magnetic field and thermodynamic stability to be increased substantially in comparison with those of low-temperature superconductor (LTS) magnets. For a toroidal magnet of the FNS, a design of a helical (partially transposed) CCE made of 2G HTS is under development with forced-flow cooling by helium gas, a current of 20–30 kA, an operating temperature of 10–20 K, and a magnetic field on the winding of 12–15 T (prospectively ~20 T). Short-sized samples of the helical flexible heavy-current CCE are being fabricated and investigated; a pilot-line unit for production of long-sized CCE pieces is under construction. The applied fabrication technique allows the CCE to be produced which combines a high operating current, thermal and mechanical stability, manufacturability, and low losses in the alternating modes. The possibility of fabricating the CCE with the outer dimensions and values of the operating parameter required for the FNS (and with a significant margin) using already available serial 2G HTS tapes is substantiated. The maximum field of toroidal magnets with CCEs made of 2G HTS will be limited only by mechanical properties of the magnet’s casing and structure, while the thermal stability will be approximately two orders of magnitude higher than that of toroidal magnets with LTS-based CCEs. The helical CCE made of 2G HTS is very promising for fusion and hybrid electric power plants, and its design and technologies of production, as well as the prototype coils made of it for the FNS and other tokamaks, are worth developing now.  相似文献   

7.
The responsivity of a type 6H-SiC photodiode in the 1.5-400 nm wavelength range was measured using synchrotron radiation. The responsivity was 0.20 A/W at 270 nm and was less than 0.10 A/W in the extreme ultraviolet (EUV) region. The responsivity was calculated using a proven optical model that accounted for the reflection and absorption of the incident radiation and the variation of the charge collection efficiency (CCE) with depth into the device. The CCE was determined from the responsivity measured in the 200-400 nm wavelength range. By use of this CCE and the effective pair creation energy (7.2 eV) determined from x-ray absorption measurements, the EUV responsivity was accurately modeled with no free parameters. The measured visible-light sensitivity, although low compared with that of a silicon photodiode, was surprisingly high for this wide bandgap semiconductor.  相似文献   

8.
Frequency-modulated (FM) pulses that function according to adiabatic principles are becoming increasingly popular in many areas of NMR. Often adiabatic pulses can extend experimental capabilities and minimize annoying experimental imperfections. Here, adiabatic principles and some of the current methods used to create these pulses are considered. The classical adiabatic rapid passage, which is a fundamental element upon which all adiabatic pulses and sequences are based, is analyzed using vector models in different rotating frames of reference. Two methods to optimize adiabaticity are described, and ways to tailor modulation functions to best satisfy specific experimental needs are demonstrated. Finally, adiabatic plane rotation pulses and frequency-selective multiple spin-echo sequences are considered.  相似文献   

9.
Current diffusion is an old issue, nevertheless, the relationship between the current diffusion and the efficiency of light emitting diodes(LEDs) needs to be further quantitatively clarified. By incorporating current crowding effect(CCE) into the conventional ABC model, we have theoretically and directly correlated the current diffusion and the internal quantum efficiency(IQE), light extraction efficiency(LEE), and external quantum efficiency(EQE) droop of the lateral LEDs.However, questions still exist for the vertical LEDs(V-LEDs). Here firstly the current diffusion length L_s(I) and L_s(II) have been clarified. Based on this, the influence of CCE on the EQE, IQE, and LEE of V-LEDs were investigated. Specifically to our V-LEDs with moderate series resistivity, L_s(III) was developed by combining L_s(I) and L_s(II), and the CCE effect on the performance of V-LEDs was investigated. The wall-plug efficiency(WPE) of V-LEDs ware investigated finally. Our works provide a deep understanding of the current diffusion status and the correlated efficiency droop in V-LEDs, thus would benefit the V-LEDs' chip design and further efficiency improvement.  相似文献   

10.
The response of a spin (1/2) ensemble, at thermal equilibrium and experiencing chemical shift anisotropy (CSA), to the application of adiabatic inversion pulses has been studied under magic-angle spinning (MAS). Numerical simulations and experimental studies on such systems, carried out under slow spinning conditions, show that the response to adiabatic inversion pulses has much more favorable characteristics than the response to conventional rectangular pulses. We have also explored the possibilities of employing adiabatic 180 degrees pulses as dephasing pulses in rotational-echo double-resonance (REDOR) experiments. Our results show that it is indeed possible to employ such adiabatic inversion pulses conveniently in REDOR experiments to eliminate resonance offset and H(1) inhomogeneity effects which may arise from the usage of conventional rectangular 180 degrees pulses. Copyright 2000 Academic Press.  相似文献   

11.
The influence of damage induced by 2 MeV protons on CdZnTe radiation detectors is investigated using ion beam induced charge (IBIC) microscopy. Charge collection efficiency (CCE) in irradiated region is found to be degraded above a fluence of 3.3 × 1011 p/cm2 and the energy spectrum is severely deteriorated with increasing fluence. Moreover, CCE maps obtained under the applied biases from 50 V to 400 V suggests that local radiation damage results in significant degradation of CCE uniformity, especially under low bias, i. e., 50 V and 100 V. The CCE nonuniformity induced by local radiation damage, however, can be greatly improved by increasing the detector applied bias. This bias-dependent effect of 2 MeV proton-induced radiation damage in CdZnTe detectors is attributed to the interaction of electron cloud and radiation-induced displacement defects.  相似文献   

12.
The problem of noncollinear second harmonic generation (NSHG) of short, spatially limited light pulses in uni-axial nonlinear crystals has been solved. Based on an analysis of the obtained solution concrete experimental procedures to determine the duration of ultra-short laser pulses are suggested. Expressions for the evaluation of experimental results are given.  相似文献   

13.
Despite the many successes of artificial intelligence in healthcare applications where human–machine teaming is an intrinsic characteristic of the environment, there is little work that proposes methods for adapting quantitative health data-features with human expertise insights. A method for incorporating qualitative expert perspectives in machine learning training data is proposed. The method implements an entropy-based consensus construct that minimizes the challenges of qualitative-scale data such that they can be combined with quantitative measures in a critical clinical event (CCE) vector. Specifically, the CCE vector minimizes the effects where (a) the sample size is too small, (b) the data may not be normally distributed, or (c) The data are from Likert scales, which are ordinal, so parametric statistics cannot be used. The incorporation of human perspectives in machine learning training data provides encoding of human considerations in the subsequent machine learning model. This encoding provides a basis for increasing explainability, understandability, and ultimately trust in AI-based clinical decision support system (CDSS), thereby improving human–machine teaming concerns. A discussion of applying the CCE vector in a CDSS regime and implications for machine learning are also presented.  相似文献   

14.
A novel method is proposed to suppress the frequency chirp of single-driver z-cut Mach Zehnder modulators. Theoretical analysis shows that by multiplying the output pulses of a half clock frequency driving single-driver z-cut modulator with the one delayed odd multiple bit duration, the frequency chirp can be removed entirely, and return-to-zero (RZ) pulses with duty cycles of about 25% and 56% are obtained. An experimental scheme is proposed to validate the proposed method. The pulses can be obtained by using this scheme. experimental results show that perfect 40 GHz zero-chirp RZ  相似文献   

15.
The density functional determining the Coulomb energy of nuclei is calculated to the first order in e 2. It is shown that the Coulomb energy includes three terms: the Hartree energy; the Fock energy; and the correlation Coulomb energy (CCE), which contributes considerably to the surface energy, the mass difference between mirror nuclei, and the single-particle spectrum. A CCE-based mechanism of a systematic shift of the single-particle spectrum is proposed. A dominant contribution to the CCE is shown to come from the surface region of nuclei. The CCE effect on the calculated proton drip line is examined, and the maximum charge Z of nuclei near this line is found to decrease by 2 or 3 units. The effect of Coulomb interaction on the effective proton mass is analyzed.  相似文献   

16.
We report the first experimental observation of controllable temporal delay of wideband laser pulses (input spectral bandwidth of 3.3 GHz) using electromagnetically induced transparency. We obtain this result with limited temporal distortion of our pulses and excellent values of the delay-bandwidth product. Our experimental results are in agreement with a theoretical analysis.  相似文献   

17.
We have experimentally investigated low-repetition nanosecond pulses delivered from an erbium-doped fiber (EDF) laser operating in ultra-large anomalous dispersion regime. The output pulses with rectangular profile and Gaussian spectrum almost keep invariable when they propagate through either normal- or anomalous-dispersion fibers. After nanosecond pulses are amplified via a two-stage EDF amplifier, they are broken up and exhibited as flatly broadened supercontinuum from 1520 to 1700 nm if amplified pulses are launched into a 10-km single-mode fiber, whereas the pulses retain the same duration with a broadband supercontinuum from 1200 to 1750 nm if they are input into a 100-m highly-nonlinear low-dispersion photonic-crystal fiber (PCF). The experimental observations demonstrate that the nanosecond pulses result from nonlinear polarization switching and can be regarded as dispersion-insensitive low-coherent pulses rather than compressible pulses.  相似文献   

18.
潘健  余琦  彭新华 《物理学报》2017,66(15):150302-150302
随着量子信息与量子计算科学的发展,量子信息处理器被广泛地用于量子计算、量子模拟、量子度量等方面的研究.为了能在实验上实现这些日益复杂的方案,将量子计算机的潜能转化成现实,需要不断提高可操控的量子体系比特位数,实现更复杂的量子操控.核磁共振自旋体系作为一个优秀的量子实验测试平台,提供了丰富而又精密的量子操控手段.近几年来在此平台上进行了不少的多量子比特实验,发展并积累了一系列的多量子比特实验技术.本文首先阐述了核磁共振体系多量子比特实验中的实验困难,然后结合7量子比特标记赝纯态制备以及其他有关实验,对多比特实验过程中应用到的实验技术进行介绍.最后对核磁共振体系多量子比特实验技术方向的进一步研究进行了总结和展望.  相似文献   

19.
We report experimental evidence of waveguide self-compression for high-power Cr: forsterite-laser femtosecond pulses in a hollow photonic-crystal fiber. Dispersion spreading typical of low-intensity laser pulses is replaced by nonuniform compression for pulses with high power (above 100 MW) with the compression efficiency reaching its maximum around the peak of the laser pulse.  相似文献   

20.
We report both extracavity and intracavity simultaneous second-harmonic generation and compression of pulses at 1.25 mum from a synchronously pumped RbTiOAsO(4) -based optical parametric oscillator, using an aperiodically poled crystal of KTiOPO(4) . The 290-fs input pulses were temporally compressed to 120 fs, with average output powers as great as 120 mW. The experimental results are compared with a numerical model that uses data obtained by characterization of the input pulses by use of the frequency-resolved optical gating technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号