首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A filter-free scheme for ultrawideband (UWB) generation with single semiconductor optical amplifier (SOA) is proposed and demonstrated. A pair of polarity-reversed optical pulses is generated due to cross gain modulation (XGM) in the pump-probe scheme, whereas the amplified pump pulse becomes sharp at its leading edge such that the power peak is shifted forward. Hence, the combination of the pump and probe signals at the SOA output is quasi-monocycle shape. Our scheme is an improved scheme to avoid exploiting optical filters and time-delay devices. The generated UWB radio frequency spectrum shows good stability when the input probe power varies from −10 dBm to 6 dBm, the probe wavelength varies in the whole C-band, and the bias current varies from 100 mA to 240 mA. Although the generated quasi-monocycle deviates from a standard Gauss monocycle to some extent, the frequency spectrum conforms to the UWB regulation. Two SOAs with different XGM dynamics are compared in generating UWB signals.  相似文献   

2.
The dual sideband optical carrier suppression (DSB-OCS) technique is employed in the optical carrier generation for 40 GHz radio over fiber (ROF) system. A dual electrode Mach-Zehnder modulator (DE-MZM) with the minimum transmission bias (MiTB) technique is employed to build the system. The results show that, a 40 GHz carrier is successfully generated with the amplitude up to −29 dBm and signal to noise ratio (SNR) of 35 dB and a high definition (HD) signal is successfully transmitted using the system. Finally, the bit error rate (BER) measurement is carried out for the system with 1.25 Gbps OOK signal showing an error free 40 GHz ROF system with almost no penalty between the back to back and 20 km fiber for a BER of 10−9.  相似文献   

3.
A photonic approach to realizing instantaneous measurement of microwave frequency based on optical monitoring using a fiber Bragg grating (FBG) is proposed and demonstrated. In the approach, a frequency-unknown microwave signal is modulated on an optical carrier in a Mach-Zehnder modulator biased at the minimum transmission point. After detecting the transmission and reflection optical powers at the output of the FBG, the microwave frequency can be determined according to the value of transmission-to-reflection power ratio, due to the fixed relationship between the microwave frequency and the power ratio. A proof-of-concept experiment has been performed, which demonstrates that a measurement resolution of ±0.08 GHz over a 10 GHz measurement bandwidth is achieved. The measurement performance in terms of resolution is better than previously reported results.  相似文献   

4.
Surinder Singh  R.S. Kaler 《Optik》2007,118(2):74-82
We numerically simulated the ten channels at 10 Gb/s dense wavelength division multiplexing (DWDM) transmission faithfully over 17,227 km using 70 km span of single mode fiber (SMF) and dispersion compensating fiber (DCF) using optimum span scheme at channel spacing 20 GHz. For this purpose, inline optimized semiconductor optical amplifiers (SOAs) and DPSK format are used. We optimized the SOA parameters for inline amplifier with minimum crosstalk and amplified spontaneous emission noise with sufficient gain at bias current 400 mA. For this bias current, constant gain 36.5 dB is obtained up to saturation power 21.35 mW. We have also optimized the optical phase modulator bandwidth for 400 mA current which is around 5.5 GHz with crosstalk −14.2 dB between two channels at spacing 20 GHz.We show the 10×10 Gb/s transmission over 70 km distance with inline amplifier has good signal power received as compared to without amplifier, even at equal quality factor. We further investigated the optimum span scheme for 5670 km transmission distance for 10×10 Gb/s with channel spacing 20 at 5.5 GHz optical phase modulator bandwidth. As we increase the transmission distance up to 17,227 km, there is increase in power penalty with reasonable quality.The impact of optical power received and Q factor at 5670 and 17,227 km transmission distance for different span schemes for all channels has been illustrated. For launched optical power less than saturation, all channels are obtained at bit error rate floor of 10−10.  相似文献   

5.
Hoon Kim 《Optics Communications》2008,281(5):1108-1112
In millimeter-wave-over-fiber (MWoF) feeder systems, the received millimeter-wave signals at the remote antennas (RAs) can suffer from signal fading by chromatic dispersion of optical fiber. This can be substantially mitigated by Mach-Zehnder modulator (MZM) based photonic up-conversion technique. In this technique, the data signals at intermediate frequency (IF) are frequency up-converted to millimeter-wave frequency by an MZM biased at its transmission null point. However, this scheme requires a costly, high-speed MZM, which will hinder the widespread of this technique for cost-sensitive MWoF applications. Hence, we propose and demonstrate a cost-effective way of reducing the cost of MWoF optical transmitters based on photonic up-conversion technique. We employ a dual wavelength source composed of a directly modulated laser and a polarimetric filter. This source is used to generate a millimeter-wave tone signal and to frequency up-convert the IF data signals to millimeter-wave frequency. The dual wavelength source is also shared with numerous RAs for further cost reduction. Our experimental demonstration performed with 30 Msymbol/s 16-quadrature amplitude modulation signals shows that we can transmit the 20 GHz millimeter-wave signals over 25 km standard single-mode fiber without any transmission penalty.  相似文献   

6.
We experimentally study both reshaping of nonreturn-to-zero (NRZ) signal and NRZ to pseudoreturn-to-zero (PRZ) format conversion based on self-phase modulation of a semiconductor optical amplifier (SOA) and detuning an optical bandpass filter (OBF). When an OBF with 1 nm bandwidth is blue shifted by 0.8 nm, the distortion of the amplified NRZ signal at 10 Gbit/s is shown to be eliminated completely. When an OBF with 0.32 nm bandwidth is red shifted by 0.42 nm from the carrier frequency, NRZ-to-PRZ conversion at 10 Gbit/s is obtained. A holding beam is used to suppress the SOA noise and improve the output extinction ratio (ER). The output ER of both the reshaped NRZ and the converted PRZ is larger than 10 dB when the signal wavelength is longer than 1540 nm, and an input power dynamic range from −7 dBm to 2 dBm is obtained at a signal wavelength of 1563.6 nm. The average power of the reshaped NRZ signal is about 3 dBm at an input power dynamic range of 13 dB. The amplitude fluctuation of the converted PRZ signal is around 1.6 dB.  相似文献   

7.
An efficient electrode scheme is developed to enhance the inline detector performance of a 1.55 μm, InP–InGaAsP, Traveling Wave-Semiconductor Optical Amplifier (TW-SOA). A traveling wave approach is used to determine the voltage developed along the length of the TWSOA, accurately. A single electrode along the entire length of the device and a single, short length electrode kept at certain distance from the front facet are investigated, for input optical power levels ranging from −25 dBm to +5 dBm. Efficient position of the single electrode along the cavity length is determined for maximum detected voltage. Under this scheme, the inline detector with an electrode length of 100 μm positioned at 200 μm from the front facet, is found to provide a improvement of 6 dB and 8 dB in detected voltage for 40 mA and 50 mA bias respectively, at −10 dBm input, when compared with the maximum detected voltage reported in the literature.  相似文献   

8.
An optical power equalization amplifier with a wide dynamic range is proposed and demonstrated with no electronic control. It shows constant and equalized outputs when a power difference between input channels and a total input power are changed. It has more than a 15 dB dynamic range for input signals between −30 dBm and −5 dBm. The structure of this amplifier can be more promising when it is applied to a planar waveguide device.  相似文献   

9.
A novel configuration using only one Mach-Zehnder interferometer (MZI) for photonic-assisted instantaneous microwave frequency measurement is proposed. The amplitude comparison function (ACF), related to the input microwave frequency while independent of the input optical power and modulate index, is achieved by using a ratio of low-pass to bandpass frequency responses introduced by intensity and phase modulation with a shared MZI. The microwave frequency can be estimated by the measured ACF. A proof-of-concept experiment for measurement of RF from 5 to 10 GHz is successfully demonstrated with the measurement errors less than ± 0.2 GHz.  相似文献   

10.
We experimentally demonstrate a single passband, photonic microwave bandpass filter scheme based on stimulated Brillouin scattering (SBS) in optical fiber. A single side band (SSB)-modulated probe and a single frequency, tunable pump beam that have been produced by the combination of conventional Mach-Zehnder modulators and fiber Bragg grating filters, are used for the generation of SBS phenomenon in a 1-km long highly nonlinear dispersion-shifted optical fiber. Using the proposed scheme a single microwave passband with a ∼26 MHz bandwidth is readily achieved over a radio frequency tuning range from 1.3 to 9.3 GHz. The maximum Q-factor is measured to be ∼360.  相似文献   

11.
In this paper, we investigate an SOA (semiconductor optical amplifier) preamplifier structure by optimizing the carrier lifetime in order to reduce the amplified spontaneous emission (ASE) noise and crosstalk, with adequate gain increase. This proposed SOA optical preamplifier has no need of optical alignment and antireflection coating. This structure of SOA eliminates the need of optical filter, and exhibits large tolerance to the input light wavelength. The receiver sensitivity is investigated for single and multi channel transmission links. The received power of − 50.34 dBm is observed at bit error rate (BER) 10− 12 for 10 Gb/s with PIN receiver. Further, the impact of gain, amplified spontaneous emission power and gain variation for different carrier lifetime with input power for OOK system is illustrated. The proposed SOA has constant gain of 30.06 dB up to gain saturation for carrier lifetime 0.18 ns. It is predicted that low value of carrier lifetime suffers less from ASE noise.  相似文献   

12.
A scheme for hi-fi all-optical continuously tunable delay is proposed. The signal wavelength is converted to a desired idler wavelength and converted back after being delayed by a high linear-chirp-rate (HLCR) fiber Bragg grating (FBG) based on four-wave mixing (FWM) in a highly-nonlinear photonic crystal fiber (HN-PCF). In our experiment, 400 ps (more than 8 full width of half maximum, FWHM) tunable delay is achieved for a 10 GHz clock pulse with relative pulse width broaden ratio (RPWBR) of 2.08%. The power penalty is only 0.3 dB at 10−9 BER for a 10 Gb/s 231−1 pseudo random bit sequence (PRBS) data.  相似文献   

13.
Fan Li 《Optics Communications》2011,284(19):4699-4705
In this paper, a novel technique is proposed and experimentally demonstrated to reduce the effect of frequency fading (FF) and imperfect frequency response in direct-detection (DD) optical orthogonal frequency division multiplexing-radio-over-fiber (OFD-MROF) systems. To overcome FF effect in the optical fiber and imperfect frequency response in the optical and electrical devices at the high frequency, we pre-emphasize the power of the millimeter wave (mm-wave) OFDM sub-carriers appropriately in the center station. Experimental result of the proposed system shows the received sensitivity has been improved about 2 dB at the BER of 1 × 10− 4 after 50 km SSMF transmission for 2.5 Gb/s OFDM signal carried on 60 GHz optical mm-wave compared to the original system without pre-emphasis technique.  相似文献   

14.
An integrated photonic microwave reconfigurable filter was proposed and realized incorporating a tunable polymeric ring resonator. Its passband could be shaped electrically by shifting the resonant peaks of the resonator via the thermo-optic effect. As for the achieved performance, the center frequency was 20 GHz, the extinction ratio ∼15 dB, the bandwidth 2 GHz, and the corresponding quality factor 10. The microwave output within the passband was varied efficiently by ∼27 dB with the rate of ∼6.7 dB/mW, while the wavelength tuning rate of the resonator was −0.02 nm/mW.  相似文献   

15.
A novel photonic method of 60 GHz-band vector signal generation for RoF systems based on optical vector signal down-conversion is proposed and experimentally demonstrated in this paper. In the proposed method, the target vector signals are first generated in the optical domain with the help of mature commercial optical devices and then directly distributed to the base stations (BSs) through the fiber link. The generated vector signals can be automatically down-converted to the 60 GHz band in the BSs after O/E conversion, and then directly transmitted to the users without any further processing. With the proposed method, higher spectrum efficiency and system capacity will be obtained compared with the traditional OOK RoF systems while almost no extra system complexity and cost is brought in. According to the characteristics of different types of vector signals, two particular modulation schemes are provided, which are then verified by corresponding simulations and experiments. In the experimental 60 GHz RoF system, the 622 MSym/s 60 GHz-band 8-QAM and 4-QAM signals generated with two different schemes respectively are successfully transmitted over 50 km SMF and 5 m wireless channel without any compensation, and the power penalty are both about 1.7 dB at the BER of 10− 9.  相似文献   

16.
In this paper we proposed optical NOR and NAND gates. By combining nonlinear Kerr effect with photonic crystal ring resonators first we designed a structure, whose optical behavior can be controlled via input power intensity. The switching power threshold obtained for this structure equal to 2 kW/μm2. For designing the proposed optical logic gates we employed two resonant rings with the same structures, both rings at the logic gates were designed such that their resonant wavelength be at λ = 1550 nm. Every proposed logic gate has one bias and two logic input ports. We used plane wave expansion and finite difference time domain methods for analyzing the proposed structures.  相似文献   

17.
The observation of four-wave mixing in a 6 mm long sandwiched slot waveguide filled with Si-nc/SiO2 is reported for optical powers usually employed in telecommunication systems. A −47 dB conversion efficiency is measured in fabricated waveguides for input signal powers around 12 dBm on chip and a waveguide length of 6 mm. Furthermore, the calculated non-linear coefficient is found to be n2 = 2.67 × 10−17 m2/W. It is also expected that, by using longer waveguides, it would be possible to achieve wavelength conversion.  相似文献   

18.
A novel scheme for all-optical frequency multiplication/recovery based on a semiconductor optical amplifier ring cavity is proposed and investigated numerically. The results show, for a 2.5 GHz driving pulse train, it can be generated 5-25 GHz repetition rate pulse trains with low clock amplitude jitter, polarization independence and high peak power. Furthermore, the extraction of the clock signal from a pseudorandom bit sequence signal can be realized based on the proposed scheme.  相似文献   

19.
A novel method for measuring the nonlinear refractive index of an optical fiber using a spectral ratio between the modulation frequency and a harmonic component in a modulated optical fiber ring resonator (OFRR) is proposed. The spectral ratio between the modulation frequency and the 2nd-harmonics generated by phase-modulation through the OFRR is increased with increasing the input light power and has peaks above 5 W input power, however, the peaks was shifted to the lower input power below 1 W by averaging taken into account of the phase distribution. A experimental setup consisted of an OFRR system and an Ar-laser as a pump light source was used to determine the nonlinear refractive index of an optical fiber. In the experimental results, the peaks of the spectral ratio as a function of the input power was found out at 0.8 W and 0.45 W of the input power corresponding to the input source line at 488.0 nm and 514.5 nm, respectively. The profile was similar to that obtained by the simulation and the nonlinear refractive index of a optical fiber was determined as 1.0 × 10−22 m2/V2 by a relationship between the input power giving the peak and the nonlinear refractive index.  相似文献   

20.
We propose and experimentally demonstrate a frequency divider implemented by an optically injected Fabry-Perot laser diode (FP-LD) based on the nonlinear dynamical period-one oscillation. Injected by optical pulses, the FP-LD will oscillate in unstable dynamical period-one (P1) oscillation. Through changing the injected strength, emitting wavelength and bias current of the FP-LD, the oscillating frequencies of the P1 state can be varied. Once one of the harmonic frequencies is adjusted to match the repetition frequency of injected optical clock pulse, the P1 oscillation will be locked, and then a divided clock at the fundamental frequency of the P1 oscillation can be generated. By utilizing this divider, we can achieve the optical clock frequency division of divide-by-two, -three and -four in a wide input frequency range, for instance, of 9.0 to 20.0 GHz for divide-by-two. The influence of injected optical power on the timing jitter of the divided clock is also investigated. It is expected that this frequency divider can be applied to high frequency division exceeding 100 GHz due to its fast P1 oscillation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号