首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 930 毫秒
1.
A quantitative low energy electron diffraction (LEED) analysis has been performed for the p(2 × 2)-S and c(2 × 2)-S surface structures formed by exposing the (1 × 1) phase of Ir{1 0 0} to H2S at 750 K. S is found to adsorb on the fourfold hollow sites in both structures leading to Pendry R-factor values of 0.17 for the p(2 × 2)-S and 0.16 for the c(2 × 2)-S structures. The distances between S and the nearest and next-nearest Ir atoms were found to be similar in both structures: 2.36 ± 0.01 Å and 3.33 ± 0.01 Å, respectively. The buckling in the second substrate layer is consistent with other structural studies for S adsorption on fcc{1 0 0} transition metal surfaces: 0.09 Å for p(2 × 2)-S and 0.02 Å for c(2 × 2)-S structures. The (1 × 5) reconstruction, which is the most stable phase for clean Ir{1 0 0}, is completely lifted and a c(2 × 2)-S overlayer is formed after exposure to H2S at 300 K followed by annealing to 520 K. CO temperature-programmed desorption (TPD) experiments indicate that the major factor in the poisoning of Ir by S is site blocking.  相似文献   

2.
The adsorption and desorption of CO on stepped Pt(3 2 2) = Pt(S)-[5(1 1 1) × (1 0 0)] and Pt(3 5 5) = Pt(S)-[5(1 1 1) × (1 1 1)] were investigated using in situ high-resolution X-ray photoelectron spectroscopy at BESSY II, which allows to clearly distinguish between different step and terrace adsorption sites. For the two surfaces, with the same nominal terrace width of five atomic rows, but different step orientation, significant differences are observed. While for Pt(3 5 5) CO adsorption at steps only occurs at on-top sites, on Pt(3 2 2) both step on-top and bridge sites are occupied, albeit with a significantly lower coverage (0.07 vs. 0.13 ML at 200 K). On both surfaces terrace sites are only occupied when the step sites are almost saturated confirming the enhanced binding energy at step sites. CO adsorbed at the (1 1 1) steps on Pt(3 5 5) is more strongly bound than on the (1 0 0) steps on Pt(3 2 2), which is attributed to the different electronic and geometric structure of the steps. The relative occupation of terrace and step sites at a given coverage remains the same between 120 and 290 K on Pt(3 5 5) K, but shows major changes on Pt(3 2 2), between step on-top and bridge sites as well as terrace on-top and bridge sites. On Pt(3 5 5) a smaller CO terrace coverage is found (0.36 vs. 0.40 ML on Pt(3 2 2) at 200 K), mainly due to the lower occupation of terrace bridge sites. For Pt(3 2 2), an ordered adsorbate phase is deduced from a c(4 × 2)-like LEED pattern, which indicates adsorbate order beyond the extension of a single terrace. A model for this structure is proposed.  相似文献   

3.
The co-adsorption of CO and O on the unreconstructed (1 × 1) phase of Ir{1 0 0} was examined by low energy electron diffraction (LEED) and temperature programmed desorption (TPD). When CO is adsorbed at 188 K onto the Ir{1 0 0} surface precovered with 0.5 ML O, a mixed c(4 × 2)-(2O + CO) overlayer is formed. All CO is oxidised upon heating and desorbs as CO2 in three distinct stages at 230 K, 330 K and 430 K in a 2:1:2 ratio. The excess oxygen left on the surface after all CO has reacted forms an overlayer with a LEED pattern with p(2 × 10) periodicity. This overlayer consists of stripes with a local p(2 × 1)-O arrangement of oxygen atoms separated by stripes of uncovered Ir. When CO is adsorbed at 300 K onto the surface precovered with 0.5 ML O an apparent (2 × 2) LEED pattern is observed. LEED IV analysis reveals that this pattern is a superposition of diffraction patterns from islands of c(2 × 2)-CO and p(2  × 1)-O structures on the surface. Heating this co-adsorbed overlayer leads to the desorption of CO2 in two stages at 330 K and 430 K; the excess CO (0.1 ML) desorbs at 590 K.LEED IV structural analysis of the mixed c(4 × 2) O and CO overlayer shows that both the CO molecules and the O atoms occupy bridge sites. The O atoms show significant lateral displacements of 0.14 Å away from the CO molecules; the C-O bond is slightly expanded with respect to the gas phase (1.19 Å); the modifications of the Ir substrate with respect to the bulk-terminated surface are very small.  相似文献   

4.
The structural stability of InN thin films on 3C-SiC(0 0 1) substrate is systematically investigated based on an empirical interatomic potential, which incorporates electrostatic energy due to covalent bond charges and ionic charges. The calculated energy differences among coherently grown 3C-InN(0 0 1), 3C-InN(0 0 1) with misfit dislocations (MDs), and 2H-InN(0 0 0 1) imply that the coherently grown 3C-InN(0 0 1) is stable when the film thickness is less than 7 monolayers (MLs) while 2H-InN(0 0 0 1) is stabilized for the thickness beyond 8 MLs. This is because InN layers in 2H-InN(0 0 0 1) are fully relaxed by one MD. The analysis of atomic configuration at the 3C-InN(0 0 1)/3C-SiC(0 0 1) interfaces reveals that the coordination number of interfacial atoms is quite different from that in the bulk region. Thus, 3C-InN(0 0 1) with MDs on 3C-SiC(0 0 1) is always metastable over entire range of film thickness, consistent with the successful fabrication of 2H-InN(0 0 0 1) on 3C-SiC(0 0 1) by the molecular beam epitaxy. These results suggest that the mismatch in atomic arrangements at the interface crucially affects the structural stability of InN thin films on 3C-SiC(0 0 1) substrate.  相似文献   

5.
We examine the Sb incorporation and resulting surface reconstructions of Sb and GaSb deposited on GaAs(0 0 1). These films exhibit a mixed surface reconstruction of α2(2 × 4) and α(4 × 3). Initially, Sb reacts with Ga on the surface to form 2D islands of GaSb with an α(4 × 3) surface reconstruction. The 2D islands grow to a critical size of 30 nm2, beyond which the atomic surface structure of the 2D island transforms to a α2(2 × 4) reconstruction in order to reduce the strain induced surface energy. This transformation is limited by the availability of Ga, which is necessary in higher quantities for the α2(2 × 4) reconstruction than for the α(4 × 3). The transformation results in a mixed α2(2 × 4)-α(4 × 3) surface where the surface reconstruction is coupled to the surface morphology, which may in the future provide a pathway for self-assembly of structures.  相似文献   

6.
Na adsorption at room temperature causes the Na/Si(1 1 1)3 × 1 surface with Na coverage of 1/3 monolayer (ML) to transit into the Na/Si(1 1 1)6 × 1 surface at 1/2 ML and sequentially into the Na/Si(1 1 1)3 × 1 surface at 2/3 ML. The phase transition was studied by Si 2p core-level photoemission spectroscopy. The detailed line shape analysis of the Si 2p core-level spectrum of the Na/Si(1 1 1)3 × 1 surface (2/3 ML) is presented and compared to the Na/Si(1 1 1)3 × 1 surface (1/3 ML) which is composed of Si honeycomb chain-channel structures. This suggests that as additional Na atoms form atomic chains resulting in the Na/Si(1 1 1)3 × 1 surface (2/3 ML), the inner atoms of the Si honeycomb chain-channel structure is buckled due to the additional Na atoms.  相似文献   

7.
We report on the adsorption and decomposition of NO on O-covered planar Ir(2 1 0) and nanofaceted Ir(2 1 0) with variable facet sizes investigated using temperature programmed desorption (TPD), high-resolution electron energy loss spectroscopy (HREELS), and density functional theory (DFT). When pre-covered with up to 0.5 ML O, both planar and faceted Ir(2 1 0) exhibit unexpectedly high reactivity for NO decomposition. Upon increasing the oxygen coverage to 0.7 ML O, planar Ir(2 1 0) has little activity while faceted Ir(2 1 0) still remains active toward NO decomposition, although NO decomposition is completely inhibited when both surfaces are pre-covered by 1 ML O. NO molecularly adsorbs on O-covered Ir at 300 K. At low NO and oxygen coverage, NO adsorbs on the atop sites of planar Ir(2 1 0) while on the bridge and atop sites of faceted Ir(2 1 0) composed of (1 1 0) and {3 1 1} faces. No evidence for size effects in the decomposition of NO on O-covered faceted Ir(2 1 0) is observed for average facet size in the range 5-14 nm. Our findings should be of importance for development of Ir-based catalysts for NO decomposition under oxygen-rich conditions.  相似文献   

8.
In-plane elastic lattice strain on the Cu(0 0 1)-c(2 × 2)N surfaces is investigated by scanning tunneling microscopy on the surface where nitrogen-adsorbed patches with average size of 5 × 5 nm2 (c(2 × 2)N patches) are well separated by wide clean Cu surface. The lattice distortion on clean Cu surface is recognized in the vicinity of the boundary to a c(2 × 2)N patch. The positions of the protrusions observed on the c(2 × 2)N patch are compared with the surrounding undistorted (1 × 1) lattice of the clean Cu surface. Most of the protrusions on the c(2 × 2)N patches locate on the fourfold hollow sites of the undistorted Cu lattice. The lattice distortion is significant only near the boundary to the surrounding clean Cu surface.  相似文献   

9.
Surface phase diagram of recently proposed GaAs(0 0 1)-(2 × 4)γ is systematically investigated by using our ab initio-based approach. We focus on the (4 × 7) domain consisting of c(4 × 4)-like and (2 × 4)-like regions to clarify surface dimer constituents as functions of temperature T and As (As2 and As4) pressure pAs by comparing chemical potentials of surface dimers in the vapor phase with that on the surface. The calculated results under As4 imply that Ga dimers in the c(4 × 4)-like region tend to become stable with increase of temperature and appear at the conventional growth condition such as T ∼ 800 K and pAs ∼ 10−6 Torr, while the (2 × 4)-like region favors As dimers. This is consistent with temperature dependence of change in surface dimer constituents on the c(4 × 4) and (2 × 4)β2 clarified in our previous study. Furthermore, the surface phase transition from the c(4 × 4) to (2 × 4)β2 via (2 × 4)γ is discussed on the basis of the phase diagram obtained in this study.  相似文献   

10.
Surface phase diagrams of GaN(0 0 0 1)-(2 × 2) and pseudo-(1 × 1) surfaces are systematically investigated by using our ab initio-based approach. The phase diagrams are obtained as functions of temperature T and Ga beam equivalent pressure pGa by comparing chemical potentials of Ga atom in the vapor phase with that on the surface. The calculated results imply that the (2 × 2) surface is stable in the temperature range of 700-1000 K at 10−8 Torr and 900-1400 K at 10−2 Torr. This is consistent with experimental stable temperature range for the (2 × 2). On the other hand, the pseudo-(1 × 1) phase is stable in the temperature range less than 700 K at 10−8 Torr and less than 1000 K at 10−2 Torr. Furthermore, the stable region of the pseudo-(1 × 1) phase almost coincides with that of the (2 × 2) with excess Ga adatom. This suggests that Ga adsorption or desorption during GaN MBE growth can easily change the pseudo-(1 × 1) to the (2 × 2) with Ga adatom and vice versa.  相似文献   

11.
Based on the results of scanning tunneling microscopy studies of the reconstructed Si(5 5 12)-2 × 1 surface, its atomic structure has been found. It turns out that Si(5 5 12)-2 × 1 consists of four one-dimensional structures: honeycomb (H) chain, π-bonded H′ (π) chain, dimer-adatom (D/A) row, and tetramer (T) row. Its period is composed of three subunits, i.e., (i) (3 3 7) unit with a D/A row [D(3 3 7)], (ii) (3 3 7) unit with a T row [T(3 3 7)], and (iii) (2 2 5) unit with both a D/A and a T row. Two kinds of adjacent subunits, T(3 3 7)/D(3 3 7) and D(3 3 7)/(2 2 5), are divided by H chains with 2× periodicity due to buckling, while one kind of adjacent subunits, T(3 3 7)/(2 2 5), is divided by a π chain with 1× periodicity. Two chain structures, H and π chains, commute with each other depending upon the external stresses perpendicular to the chain, which is the same for two row structures, D/A and T rows. It can be concluded that the wide and planar reconstruction of Si(5 5 12)-2 × 1 is originates from the stress balance among two commutable chains and two commutable rows.  相似文献   

12.
The HDO absorption spectrum has been recorded between 9625 and 10 100 cm−1 by intracavity laser absorption spectroscopy (ICLAS) based on a vertical external cavity surface emitting laser (VECSEL). Overall 1278 lines were attributed to the HDO species and were rovibrationally assigned using both the predictions based on the high-quality potential and dipole moment surfaces calculated by Schwenke and Partridge, and the spectrum simulation performed within the effective Hamiltonian approach. As a result, 289 precise energy levels were derived for the (1 0 2)-(0 2 2) resonance dyad and 101 were assigned to the (0 3 2), (2 3 0), (1 5 0), (3 1 0), (1 1 2), and (0 8 0) states. The effective Hamiltonian modeling of the (0 2 2)-(1 0 2) and (1 1 2)-(0 3 2) interacting dyads is presented and discussed. A few local perturbations with highly excited bending levels could be identified.  相似文献   

13.
We have performed density-functional theory calculations to study the atomic structure of the K/Pd(1 0 0)-p(2 × 2) and -c(2 × 2) surfaces formed at 0.25 ML and 0.5 ML, respectively. We find that K atoms prefer the hollow site with the K adsorption height 2.44 Å for p(2 × 2) and 2.50 Å c(2 × 2). The first interlayer spacing (d12) of the Pd(1 0 0) substrate appears slightly contracted from the bulk value as Δd12 = −0.8% and −0.3% for p(2 × 2) and c(2 × 2), respectively. The calculated contraction Δd12 = −0.3% for c(2 × 2) is not in accord with the expansion Δd12 = +1.3% reported by a low-energy electron diffraction (LEED) study. As the origin of this difference, a possibility of hydrogen contamination of the surface sample used in the LEED study is suggested: Our calculations show that the d12 of K/Pd(1 0 0)-c(2 × 2) increases linearly with the coverage of H coadsorption, which leads to an estimation for the H coverage of the surface sample as 0.1-0.4 ML.  相似文献   

14.
In situ electrochemical scanning tunneling microscopy (STM) has been used to examine the structures of benzenethiol adlayers on Au(1 0 0) and Pt(1 0 0) electrodes in 0.1 M HClO4, revealing the formation of well-ordered adlattices of Au(1 0 0)-(√2 × √5) between 0.2 and 0.9 V and Pt(1 0 0)-(√2 × √2)R45° between 0 and 0.5 V (versus reversible hydrogen electrode), respectively. The coverage of Au(1 0 0)-(√2 × √5) is 0.33, which is identical to those observed for upright alkanethiol admolecules on Au(1 1 1). In comparison, the coverage of Pt(1 0 0)-(√2 × √2)R45° - benzenethiol is 0.5, much higher than those of thiol molecules on gold surfaces. This result suggests that benzenethiol admolecules on Pt(1 0 0) could stand even more upright than those on Au(1 0 0). All benzenethiol admolecules were imaged by the STM as protrusions with equal corrugation heights, suggesting identical molecular registries on Au(1 0 0) and Pt(1 0 0) electrodes, respectively. Modulation of the potential of a benzenethiol-coated Au(1 0 0) electrode resulted in irreversible desorption of admolecules at E ? 0.1 V (vs. reversible hydrogen electrode) and oxidation of admolecules at E ? 0.9 V. In contrast, benzenethiol admolecule was not desorbed from Pt(1 0 0) at potentials as negative as the onset of hydrogen evolution. Raising the potential rendered deposition of more benzenethiol molecules before oxidation of admolecules commenced at E > 0.9 V.  相似文献   

15.
M. Çakmak  E. Mete 《Surface science》2006,600(18):3614-3618
The adsorption of Sr on the Si(0 0 1) surface with the semiantiphase dimer (2 × 2) reconstruction is studied, based upon the ab initio pseudopotential calculations. It is calculated that the semiantiphase dimer (2 × 2) reconstruction (2 dimers per unit cell) is more favorable than the (2 × 1) phase (1 dimer per unit cell) by an energy of about 0.24 eV/dimer. Considering the energetically more stable reconstruction, we have assumed four possible locations for 1/4 monolayer (ML) Sr adsorption on this surface: (i) bridge, (ii) cave, (iii) pedestal, and (iv) valley-bridge. We find that Sr adsorption on the valley-bridge site is energetically more favorable than all other cases studied here. Interestingly, one of the dimers becomes symmetric, but the other one is still asymmetric with the buckling angle reduced from 18° to 14°, when compared with the clean Si(0 0 1)-(2 × 2) surface. The calculated bond length between Sr and Si in the case of valley-bridge adsorption site is 3.05 Å, and in good agreement with other theoretical calculations. We also present and compare the electronic band structures for the clean and covered surfaces as well as the corresponding charge density plots.  相似文献   

16.
The surface structure of BaO(1 1 1) has been determined using STM and computer modelling. The BaO(1 1 1) surface was prepared in thin film form on Pt(1 1 1) and presents a surface with twice the lattice parameter expected for that of the bulk termination, i.e. a (2 × 2) reconstruction. Computer modelling indicates that the bulk termination is unstable, but that the (2 × 2) reconstructed BaO(1 1 1) surface has a low surface energy and is hence a stable surface reconstruction. The (2 × 2) reconstruction consists of small, three-sided pyramids with (1 0 0) oriented sides and either oxygen or barium ions at the apices. Less regular surface reconstructions containing the same pyramids are almost equally stable, indicating that we may also expect less regular regions to appear with a fairly random distribution of these surface species. The simulations further suggest that a regular (4 × 4) reconstruction built up of bigger pyramids is even more energetically favourable, and some evidence is found for such a structure in the STM.  相似文献   

17.
Sulphur-headgroup organic molecules have been chemisorbed on Cu(1 0 0) as self-assembled monolayers (SAMs) in highly-ordered two-fold symmetry structures, and the electronic states induced at the interface have been measured by photoemission: a close similarity of the main interface states for methane-thiolate and mercaptobenzoxazole on Cu(1 0 0) in the same p(2 × 2)-phase is observed. The bonding states for methane-thiolate/Cu(1 0 0) in the p(2 × 2) and c(2 × 2) structures have been compared to ab-initio calculation of the total density of states (DOS) for the S/Cu(1 0 0) system in the same phases. The major role of the S-Cu bonding to determine the density of state evolution at the interface is brought to light. The observed differences in the two phases depend mainly on the charge distribution associated to the different molecular packing, with a minor role of the radical group.  相似文献   

18.
We have carried out adsorption and residual thermal desorption experiments of Indium on Si (1 1 1) 7 × 7 reconstructed surface, in the submonolayer regime, in Ultra High Vacuum (UHV) using in situ probes such as Auger Electron Spectroscopy (AES) and Low Energy Electron Diffraction (LEED). The coverage information from AES and the surface symmetry from LEED is used to draw a 2D phase diagram which characterizes each observed superstructural phases. The different superstructural phases observed are Si(1 1 1)7 × 7-In, Si(1 1 1)√3 × √3R30°-In, Si(1 1 1)4 × 1-In, Si(1 1 1)2√3 × 2√3R30°-In and Si(1 1 1)√7 × √3-In in characteristic temperature and coverage regime. In addition to the 1/3 ML, √3 × √3-In phase, we observe two additional √3 × √3-In phases at around 0.6 and 1 ML. Our careful residual thermal desorption studies yields the Si(1 1 1)2√3 × 2√3R30°-In phase which has infrequently appeared in the literature. We probe theoretically the structure of this phase according to the LEED structure and coverage measured by AES, assuming that the model for Si(1 1 1)2√3 × 2√3R30°-In is very proximal to the well established Si(1 1 1)2√3 × 2√3R30°-Sn phase, using ab initio calculation based on pseudopotentials and Density Functional Theory (DFT) to simulate an STM image of the system. Calculations show the differences in the atomic position and charge distribution in the Si(1 1 1)2√3 × 2√3R30°-In case.  相似文献   

19.
Electronic and structural properties of Bi-terminated reconstructions on GaAs(0 0 1) surface have been studied by scanning tunneling microscopy (STM) and synchrotron radiation core-level spectroscopy. A 2-3 monolayer thick Bi-layer was evaporated on a Ga-terminated GaAs(0 0 1) surface. By heating the surface, the reconstruction changed from (2 × 1) to (2 × 4). The α2 phase with one top Bi dimer and one As or Bi dimer in the third atomic layer per surface unit cell is proposed to explain the STM images of the Bi/GaAs(0 0 1)(2 × 4) surface heated at 400 °C. Bi 5d photoemission from the Bi/GaAs(2 × 4) consisted of two components suggesting two different bonding sites for Bi atoms on the (2 × 4) surface. The variation of the surface sensitivity of the photoemission induced no changes in the intensities of the components indicating that the origins of both components lie in the first surface layer.  相似文献   

20.
Adsorption of carbon monoxide on Pd(3 1 1) and (2 1 1) stepped surfaces has been investigated by the extended London-Eyring-Polyani-Sato (LEPS) method constructed using a 5-parameter Morse potential. The calculated results show that there exist common characteristics of CO adsorption on the two surfaces. At low coverage, CO occupies threefold hollow site of the (1 1 1) terrace and is tilted with respect to the surface normal. Among the threefold hollow sites on the (1 1 1) terrace, the nearer the site is to the step, the greater is the influence of the step. The twofold bridge site on the (1 0 0) step is also a stable adsorption site at high coverage. Because of the different lengths of the (1 1 1) terraces, the (3 1 1) and (2 1 1) stepped surfaces have different characteristics. A number of new sites are exposed on the boundary regions, including the fourfold hollow site (H4) of the (3 1 1) surface and the fivefold hollow site (H5) of the (2 1 1) surface. At high coverage, CO resides in the H5 site of the (2 1 1) surface, but the H4 site of the (3 1 1) surface is not a stable adsorption site. This study further shows that the on-top site on the (1 0 0) step of Pd(3 1 1) is a stable adsorption site, but the same type of site on Pd(2 1 1) is not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号