首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The shape and microstructure in laser-induction hybrid cladding were investigated, in which the cladding material was provided by means of three different methods including the powder feeding, cold pre-placed coating (CPPC) and thermal pre-placed coating (TPPC). Moreover, the modes of energy action in laser-induction hybrid cladding were also studied. The results indicate that the cladding material supplying method has an important influence on the shape and microstructure of coating. The influence is decided by the mode of energy action in laser-induction hybrid cladding. During the TPPC hybrid cladding of Ni-based alloy, the laser and induction heating are mainly performed on coating. During the CPPC hybrid cladding of Ni-based alloy, the laser and induction heating are mainly performed on coating and substrate surface, respectively. In powder feeding hybrid cladding, a part of laser is absorbed by the powder particles directly, while the other part of laser penetrating powder cloud radiates on the molten pool. Meanwhile, the induction heating is entirely performed on the substrate. In addition, the wetting property on the interface is improved and the metallurgical bond between the coating and substrate is much easier to form. Therefore, the powder feeding laser-induction hybrid cladding has the highest cladding efficiency and the best bond property among three hybrid cladding methods.  相似文献   

2.
Based on the experiments of laser-induction hybrid cladding by powder feeding, the cracking behavior of Ni-based coating and solidification characteristic in molten pool were investigated. The results indicate that the hybrid cladding is effective to prevent from cracking in Ni-based coating. With the increase of induction energy density, the tensile stress and crack rate decrease obviously. When the induction energy density arrives at 36 J/mm2, the free-cracks coating can be achieved. In laser-induction hybrid cladding, the martensite can be eliminated in the heat affected zone and the phase transformation stress is little. Moreover, the molten pool is solidified through two directions such as the coating surface and coating/substrate interface, i.e., firstly the top and bottom in molten pool are solidified, and then the middle in molten pool is solidified. Therefore, in hybrid cladding, the peak value of tensile stress is located in the middle of coating, which is different from that in laser cladding. This distribution status of residual stress is greatly helpful to restrict the cracks of Ni-based coating in laser-induction hybrid cladding.  相似文献   

3.
Based on the powder feeding laser induction hybrid cladding experiments by means of three different laser and induction energy, the microstructure of Ni-based coating and interface characteristics between the Ni-based coating and steel substrate were investigated. The results show that the hybrid cladding energy including laser and induction energy has an important influence on the formation of the interface and the microstructure of the Ni-based coating characterized by the dendrite. In addition, the laser and induction energy can complement each other. For high hybrid cladding energy, the single phase Fe-Ni-Cr solid solution is formed at the interface between the coating and substrate, while the microhardness of the Ni-based coating decreases. For low hybrid cladding energy, the solid solution phases of Fe-Ni-Cr and Ni-Fe-Cr are respectively obtained on both sides of the interface and microhardness of the Ni-based coating is relatively high. During laser induction hybrid cladding, the metallurgical bond characterized by the white light layer is achieved between the coating and substrate, and the extent of metallurgical reaction can be controlled by adjusting the laser energy and induction energy appropriately.  相似文献   

4.
The relationships between the processing parameters (i.e. laser specific energy, powder density, preheated temperature of substrate and types of substrate) and the structure characteristics of Ni-based WC composite coatings during laser induction hybrid rapid cladding (LIHRC) were investigated systematically. The results show that laser specific energy, cladding height and contact angle have a linear relation with powder density, as can provide the predictions of laser processing parameters according to the geometrical characteristics of a single laser track (i.e. cladding height, cladding width). Moreover, dilution of composite coating increases with the increasing of laser specific energy and the preheated temperature of substrate, while reduces with the increasing of powder density. The types of substrate also have an important effect on dilution of composite coating, as has a strong dependence on the thermophysical properties of substrate (i.e. melting point, resistivity and permeability).  相似文献   

5.
激光感应复合熔覆的稀释率分析模型及实验研究   总被引:1,自引:0,他引:1  
在分析计算感应加热温度模型和激光感应复合熔覆能量作用的基础上,推导出了激光感应复合熔覆稀释率的表达式,定量反映了稀释率与激光、感应能量、材料特性和工艺参数之间的关系,并且通过实验进行了验证。研究结果表明:复合熔覆的稀释率随激光功率的增加而增大,随送粉率的增加而减小,随扫描速度的增大而减小;在其他参数恒定,感应能量增加时,稀释率显著增大。该稀释率分析模型有助于复合熔覆加工中稀释率的控制,为复合熔覆工艺参数的优化设计和熔覆层的质量控制提供了理论基础。  相似文献   

6.
磁场辅助激光熔覆制备Ni60CuMoW复合涂层   总被引:2,自引:2,他引:0       下载免费PDF全文
采用磁场辅助激光熔覆技术,在Q235钢表面制备了Ni60CuMoW复合涂层,借助SEM,EDS 和XRD 等表征手段对涂层进行了微观组织和物相分析,利用维氏硬度计测试了复合涂层截面的显微硬度分布,通过摩擦磨损实验和电化学测试系统研究了复合涂层的磨损性能和耐腐蚀性能。研究结果表明:涂层主要由-Ni,Cu)固溶体、硅化物和硼化物组成,Cr3Si晶粒细化且均匀致密;磁场辅助作用下,激光熔覆涂层平均显微硬度达到913HV0.5,为无磁场辅助涂层的1.5 倍,磨损失重仅为无磁场涂层的36%,自腐蚀电位上升了100 mV,腐蚀电流密度降低了70%,耐磨耐蚀性能得到了显著改善。  相似文献   

7.
Fe + 50 wt.% WC composite coating was prepared by laser induction hybrid rapid cladding (LIHRC) on steel substrate. The phase and microstructure of the composite coating were investigated by X-ray diffraction (XRD), environmental scanning electron microscope (ESEM) and energy dispersive spectrum (EDS). The results showed that WC particles were dissolved almost completely to precipitate the coarse herringbone M6C eutectic carbides and the fine dendritic M6C carbides, and that the partially dissolved WC particles with an alloyed reaction layer were occasionally observed in the whole coating. The phases of the composite coating were composed of supersaturated solid solution α-Fe, retained austenite, Fe3C, W2C, M6C and M7C3. The microstructure evolution in the composite coating was represented by the transformation of three parts such as Fe-based metallic matrix, dispersed carbides and incompletely dissolved WC particles. The microhardness of Fe-based WC composite coating was three times much higher than that of the substrate, but was relatively lower than that of Ni-based WC composite coating by LIHRC.  相似文献   

8.
Laser multi-layer cladding on ZM6 magnesium base alloy   总被引:2,自引:0,他引:2  
A pulsed Nd: YAG laser is used in multi-layer cladding on ZM6 Mg base alloys. The microstructure is studied with an optical microscope and a scanning electron microscope (SEM). The composition within the layer was determined by electron probe microanalysis (EPMA). X-ray diffraction (XRD) was also used to investigate the phase of constitutes of the cladding zone. The results show that microstructure in solidified cladding layer changes much when treated by high energy laser beam. The microstructure of the ZM6 alloy consists of a-Mg and Mg9Nd, while the L-ZM6 of a-Mg, MggNd and a-Zr. The depth of the cladding is over 1 mm. Many fine particles were found to be distributed homogeneously throughout the matrix and the columnar grain grows along substrate.  相似文献   

9.
鉴于传统的激光熔覆金属陶瓷复合涂层技术主要存在2方面不足:其一,熔覆效率低,导致大面积熔覆时成本昂贵;其二,由于激光熔覆本身的特点,即快速加热与快速凝固,在激光熔覆过程中,热应力极易诱导熔覆层开裂。基于此,综述了国内外激光熔覆金属陶瓷复合涂层的研究进展,指出其存在的主要问题,并提出了激光感应复合快速熔覆的新方法,即感应预热基材的同时快速激光熔覆。该方法不仅可使熔覆效率大大提高而且获得了无裂纹的金属陶瓷复合涂层。  相似文献   

10.
光纤布拉格光栅及其应用   总被引:11,自引:0,他引:11  
近年来新型的紫外激光写入的光纤布拉格光栅元件(FBG)以其具有直接写人光纤芯区、插入损耗小、易于全光集成及波长选择性好、传感信息对波长绝对编码等优点,成为国内外光纤技术领域的研究热点。该论文综述了FBG制作技术的进展,介绍和比较了各种制作方法的优缺点,对FBG在光纤通讯、光纤传感器等方面的应用前景进行了分析和说明,结果表明FBG将对整个光纤技术领域产生重要的影响。  相似文献   

11.
In order to investigate the microstructure characteristics and properties of Ni-based WC composite coatings containing a relatively large amount of WC particles by laser induction hybrid rapid cladding (LIHRC) and compare to the individual laser cladding without preheating, Ni60A + 35 wt.% WC composite coatings are deposited on A3 steel plates by LIHRC and the individual laser cladding without preheating. The composite coating produced by the individual laser cladding without preheating exhibits many cracks and pores, while the smooth composite coating without cracks and pores is obtained by LIHRC. Moreover, the cast WC particles take on the similar dissolution characteristics in Ni60A + 35 wt.% WC composite coatings by LIHRC and the individual laser cladding without preheating. Namely, the completely dissolved WC particles interact with Ni-based alloy solvent to precipitate the blocky and herringbone carbides, while the partially dissolved WC particles still preserve the primary lamellar eutectic structure. A few WC particles are split at the interface of WC and W2C, and then interact with Ni-based alloy solvent to precipitate the lamellar carbides. Compared with the individual laser cladding without preheating, LIHRC has the relatively lower temperature gradient and the relatively higher laser scanning speed. Therefore, LIHRC can produce the crack-free composite coating with relatively higher microhardness and relatively more homogeneous distribution of WC particles and is successfully applied to strengthen the corrugated roller, showing that LIHRC process has a higher efficiency and good cladding quality.  相似文献   

12.
为了提高材料表面的耐磨性和高温抗氧化性,利用激光熔覆技术在Q235钢表面制备了MoFeCrTiW高熵合金涂层,并采用X射线衍射仪(XRD)、扫描电镜(SEM)和磨损试验机等研究了Si,Al添加对高熵合金涂层组织、相结构、耐磨性和高温抗氧化性能的影响。结果表明:激光熔覆MoFeCrTiW高熵合金涂层组织为等轴晶,单独添加等物质的量的Si或Al时,涂层分别为共晶组织或树枝晶,同时添加等物质的量的Si和Al时,涂层组织为细小的等轴晶。各高熵合金涂层的主体相均为BCC相,随着Si,Al的添加,BCC相的晶格常数减小。添加等物质的量的Al有助于抑制涂层中金属间化合物的形成,使涂层耐磨性降低;添加等物质的量的Si则会形成含Si的金属间化合物和一些未知相,提高涂层耐磨性。激光熔覆MoFeCrTiW高熵合金涂层在800℃的抗氧化性较高,Si、Al的添加可使涂层的高温抗氧化性进一步提高。  相似文献   

13.
1IntroductionLasercladdingofcarbidemetalcompositecoatingsisapromisingtechnologyformanufacturingwearresistantsurfacelayersfor...  相似文献   

14.
The effect of coatings, which are formed with laser cladding and plasma spray welding on 1Cr18Ni9Ti base metal, on wear resistance is studied, A 5-kW transverse flowing CO2 laser is used for cladding Co base alloy powder pre-placed on the substrate. Comparing with the plasma spray coatings, the spoiled rate of products with laser clad layers was lower and the rate of finished products was higher. Their microstructure is extremely fine. They have close texture and small size grain. Their dilution resulting from the compositions of the base metal and thermal effect on base metal are less. The hardness, toughness,and strength of the laser cladding layers are higher. Wear tests show that the laser layers have higher properties of anti-friction, anti-scour and high-temperature sliding strike. The wear resistance of laser clad layers are about one time higher than that of plasma spray welding layer.  相似文献   

15.
不锈钢表面激光熔覆层与喷焊层耐磨性对比研究   总被引:4,自引:0,他引:4  
本文研究在1Cr18Ni9Ti基体上采用激光熔覆和离子喷焊二种工艺形成的涂层对耐磨性的影响。使用5kW横流CO2激光器对预置在基体上的Co基自熔合金粉末进行单道或多道扫描,得到的熔层与等离子焊层对比结果是:激光熔层缺陷率低,成品率高,其结构致密均匀,晶粒细小,成分稀释率更小,对基体热影响小,熔层硬度与强韧性更高。性能试验证明:激光熔层具有更高的抗擦伤磨损和抗冲击滑动高温磨损性能,耐磨性提高了一倍左右。  相似文献   

16.
Research on stress evaluation of laser cladding coating with critically refracted longitudinal wave was introduced in this paper. Two critically refracted longitudinal wave transducers with 5 MHz frequency, spacing between which was constant, were employed as signal emitter and receiver. Based on acoustoelastic equation deduction, relationship between the difference in time of flight and tensile stress is obtained. Combing with cross correlation theory, the difference in time of flight between stressed and unstressed critically refracted longitudinal signals was calculated. Results show that stress evaluation is affected by layer interface and anisotropic microstructure of laser cladding coating, precision of stress evaluation of laser cladding coating increases as step length increases until it attains one cycle. In addition, influence of waveform distortion caused by microstructure of laser cladding coating on stress evaluation is discussed. At last, verification test is carried out and the experimental result is well consistent with theoretical result.  相似文献   

17.
The content of each constituent element in the newly developed high-entropy alloys (HEAs) is always restricted in equimolar or near-equimolar ratio in order to avoid the formation of complex brittle phases during the solidification process. In this study, a 6FeNiCoSiCrAlTi high-entropy alloy coating with simple BCC solid solution phase has been prepared by laser cladding on a low carbon steel substrate. The microstructure, hardness and magnetic properties have been investigated. The experimental results show that the tendency of component segregation in the conventional solidification microstructure of multi-component alloy is effectively relieved. The microstructure of the coating is mainly composed of equiaxed polygonal grains, discontinuous interdendritic segregation and nano-precipitates. EBSD observation confirms that the polygonal grains and interdendritic segregation have similar BCC structure with lots of low angle grain boundaries at the interface. The microhardness of the coating reaches 780 HV0.5, which is much higher than most of the HEAs prepared by other methods. In addition, the coating shows excellent soft magnetic properties.  相似文献   

18.
A three dimensional model was proposed to simulate high power laser clad TiC/NiCrBSiC composite coatings on Ti6Al4V alloys. The temperature distribution, temperature curves on different nodes, three dimensional shape and size of TiC melting region, molten pool and heat affected zone (HAZ) of the substrate were obtained. To have a clear physical insight into the phase transformation and microstructure evolution in the coatings during laser cladding process, a theoretical kinetic analysis was performed to elucidate the nucleation, growth velocity, and size of TiC particles on the basis of simulated temperature curves of the molten pool. A good quality TiC/NiCrBSiC composite coating with low dilution rate and excellent metallurgical bond was fabricated under optimal processing parameters using powder mixture of TiC and NiCrBSiC as clad material and cuboid of Ti6Al4V alloys as substrate. To validate the reliability of the proposed model, the theoretical results were compared with the microstructure of the coatings. It shows that these theoretical results are in excellent agreement with the experiment cases.  相似文献   

19.
TiAg intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding using Ag powder as the precursor. It has been found that the prepared coating mainly comprised TiAg and Ti phases. The high resolution transmission electron microscopy results further conform the existence of TiAg intermetallic compound in the prepared coating. The magnified high resolution transmission electron microscopy images shown that the laser cladding coating contains TiAg nanocrystalline with the size of about 4 nm. Tribological properties of the prepared TiAg intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiAg intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiAg intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate increased as the normal load increased.  相似文献   

20.
As a further step in obtaining high performance elevated temperature self-lubrication anti-wear composite coatings on TiAl alloy, a novel Ni-P electroless plating method was adopted to encapsulate the as-received CaF2 in the preparation of precursor NiCr-Cr3C2-CaF2 mixed powders with an aim to decrease its mass loss and increase its compatibility with the metal matrix during a Nd:YAG laser cladding. The microstructure of the coating was examined using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) and the friction and wear behavior of the composite coatings sliding against the hardened 0.45% C steel ring was evaluated using a block-on-ring wear tester at room temperature. It was found that the coating had a unique microstructure consisting of primary dendrites TiC and block Al4C3 carbides reinforcement as well as fine isolated spherical CaF2 solid lubrication particles uniformly dispersed in the NiCrAlTi (γ) matrix. The good friction-reducing and anti-wear abilities of the laser clad composite coating was suggested to the Ni-P electroless plating and the attendant reduction of mass loss of CaF2 and the increasing of it's wettability with the NiCrAlTi (γ) matrix during the laser cladding process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号