首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we systematically study a designed structure of a bending dual-core photonic crystal fiber (PCF). We propose the controllable wavelength-selective coupling PCF. This coupler allows highly accurate control of the filtering wavelength. The different wavelengths can be selected by controlling the bending radius of the fiber. Coupling characteristics of novel bending wavelength-selective coupling PCF are evaluated by using a vector finite element method and their application to a multiplexer demultiplexer (MUX–DEMUX) based on the novel coupler is investigated. When the fiber length is 4168 μm, the bending radius of PCF couplers for 1.48/1.55 μm, 1.3/1.55 μm, 0.98/1.55 μm, and 0.85/1.55 μm is calculated, respectively, and the beam propagation analysis is performed. Different from the traditional wavelength-selective coupling PCF, the dual-core PCF is bent and it can realize the separation of multiple wavelengths.  相似文献   

2.
双波长抽运拉锥光子晶体光纤产生超连续谱研究   总被引:2,自引:0,他引:2  
利用1064 nm抽运光在总长度为1 m的光子晶体光纤(PCF)的前半段(77 cm)通过四波混频产生747 nm短波信号光,并对光纤的后半段进行拉锥处理,拉锥光纤具有707 nm和1177 nm两个零色散点(ZDW).利用1064 nm抽运光和产生的747 nm信号光共同在两个零色散点之间的反常色散区抽运拉锥光子晶体...  相似文献   

3.
We propose a novel method to achieve highly nonlinear photonic crystal fiber (PCF) by filling highly nonlinear liquid chloroform in the core of hollow-core PCF (HCPCF). The dispersion properties and electric field distribution of the fundamental mode are calculated by using the full-vector finite element method (FVFEM). Simulation results indicate that the zero-dispersion wavelength (ZDWL) of the chloroform-filled PCF is adjustable around 800 nm. Hence the femtosecond laser pulses with central wavelength at 800 nm can propagate in anomalous dispersion regime of the PCF, inducing the spectra broadening.  相似文献   

4.
A large mode area photonic crystal fiber (LMA PCF) with an effective area of 180 μm2 is used to generate a high energy, micro-joule range, flat, octave spanning supercontinuum (SC) extending from ~ 600 nm to ~ 1720 nm. A train of femtosecond pulses from a widely-tunable parametric amplifier pumped by a Ti:Sapphire regenerative amplifier system are coupled into a 20 cm length of LMA PCF generating a SC of 1.4 μJ energy. We present an experimental study of the high energy SC as a function of the input power and the pumping wavelength. The spectrum obtained at a pump wavelength of 1260 nm presents spectral flatness variation less than 12 dB over more than 1.1 octave bandwidth. The physical processes behind the SC formation are described in the normal and the anomalous dispersion regions. Our experimental results are successfully compared with the numerical solution of the nonlinear Schrödinger equation.  相似文献   

5.
In this paper, we numerically investigate and optimize the profile of a photonic crystal fiber (PCF) that can eliminate the residual dispersion from the telecom link as well as can provide identical dispersion compensation over S + C + L bands. A full-vectorial finite element method combined with genetic algorithm is used to optimize the fiber’s profile as well as to accurately determine its modal properties. The optimized PCF exhibits a dispersion of −98.3 ps/nm/km with a variance of ±0.55 ps/nm/km from 1.48 μm to 1.63 μm (i.e., over 150 nm bandwidth) and a zero dispersion slope. Macro-bending loss performance of the designed PCF is also studied and it is found that the fiber shows low bending losses for the smallest feasible bending radius of 5 mm. Further, sensitivity analysis has been carried out for the proposed fiber design and it has been found that a ±2% change in the fiber parameters may lead to a ±8% shift of the dispersion from its nominal value.  相似文献   

6.
H. Ademgil 《Optics Communications》2009,282(14):2831-2835
We propose an index guiding highly nonlinear birefringent photonic crystal fiber (PCF). Using a full vectorial finite element method (FEM), we investigate the key propagation characteristics of the proposed design. We demonstrate that it is possible to design a simple PCF structure configuration with a birefringence in the order of 10−2 and a nonlinear coefficient of 49 W−1 km−1 at the wavelength of 1.55 μm. It is demonstrated that two zero dispersion wavelengths can be achieved by the proposed design. Bending analysis and fabrication issues are also discussed thoroughly.  相似文献   

7.
We demonstrate 35 W high power all fiber supercontinuum generation by pumping photonic crystal fiber (PCF) with a 57.7 W picosecond fiber MOPA. The picosecond fiber MOPA pumped supercontinuum source exhibits an optical-to-optical conversion efficiency of up to 61.7%, covering a spectral range from 600 nm to beyond 1700 nm. The compact and practical configuration of this supercontinuum source has potential to achieve higher power scale together with perfect continuum spectrum.  相似文献   

8.
The objective of this paper is to investigate the implementation of a hybrid photonic crystal (PhC) 1.31/1.55 μm wavelength division multiplexer (WDM) and wavelength channel interleaver with channel spacing of roughly 0.8 nm between the operating wavelengths of 1.54-1.56 μm. It is based on 1-D photonic crystal (PhC) structure connected with an output 2-D PhC structure. The power transfer efficiency of the hybrid PhC WDM at 1.31 μm and 1.55 μm were computed by eigen-mode expansion (EME) method to be about 88% at both the wavelengths. The extinction ratios obtained for the 1.31 μm and 1.55 μm wavelengths are − 25.8 dB and − 22.9 dB respectively.  相似文献   

9.
A new high negative dispersion photonic crystal fiber is proposed. It has double-core structure. The inner core has a circle germanium-doped region. The outer core is formed by removing the 3rd ring air-holes around the core. There are two ring air-holes between the two cores, Diameter of the 1st ring air holes is bigger than that of the 2nd ring air-holes, this can make mode coupling between inner mode and outer mode and showed that the high negative PCF is the result of this structure characteristics. There are honeycomb photonic lattice in the PCF's cladding. The influence of the structure parameters deviated from the design those on the chromatic dispersion are evaluated. When the structure parameters Λ=1.50 μm, dcore=2.10 μm, d1=0.90 μm, d2=0.44 μm and d3=1.04 μm, the dispersion coefficient D is −1320 ps/(nm·km) at 1550 nm. This is a new kind of chromatic dispersion compensation PCF.  相似文献   

10.
An extruded elliptical hole photonic crystal fibers PCF with square air-core is proposed. By using a full vector finite-element method FV-FEM and anisotropic perfectly matched layers APML, the structure and optical properties of the proposed PCF are analyzed. Simulation results show that the birefringence of the proposed photonic crystal fiber can be up to the order of 10−2, and has a flattened dispersion from 1.20 μm to 1.80 μm. The proposed PCF may have important application in super-continuum SC generation, dispersion compensation, fiber-optic sensing systems and other aspects.  相似文献   

11.
Considering the optical stability of solution, the sugar-solution is infused into the outer core ring of dual-concentric-core photonic crystal fiber (DCCPCF). The influences of structure parameters and solution concentration on the phase and loss matching are comprehensively analyzed. By choosing the appropriate outer core mode to completely couple with the inner core fundamental mode, the large negative dispersion PCF around 1.55 μm is designed, which has the dispersion value of − 39,500 ps/km/nm as well as bandwidth of 7.4 nm and effective mode area of 28.3 μm2. The designed PCF with hybrid cladding structure can effectively compensate the positive dispersion of conventional single mode fiber, and suppress the system perturbation caused by a series of nonlinear effects. Considering the mode field mismatching between the DCCPCF and the tapered fiber, the calculated connection loss around 1.55 μm is below 3 dB. In addition, the equivalent propagation constants of two leaky modes are deduced from the coupled-mode theory, and the complete mode coupling case can be well predicted by comparing the real and imaginary parts of propagation constants.  相似文献   

12.
The gain characteristics of ErxY2 − xSiO5 waveguide amplifiers have been investigated by solving rate equations and propagation equations. The gain at 1.53 μm as a function of waveguide length, Er3+ concentration and pump power is studied pumping at three different wavelengths of 654 nm, 980 nm and 1480 nm, respectively. The optimum Er3+ concentrations of 1 × 1021 cm− 3-2 × 1021 cm− 3 with the high gain are obtained for all three pump wavelengths. Pumping at 654 nm wavelength is shown to be the most efficient one due to weak cooperative upconversion. A maximum 16 dB gain at 1 mm waveguide length under a 30 mW pump with Er3+ concentration of 1 × 1021 cm− 3 is demonstrated pumping at 654 nm wavelength.  相似文献   

13.
We report a novel design of photonic crystal fiber (PCF) with a rectangular array of four closely-spaced, highly elliptical air holes in the core region and a circular-air-hole cladding. The proposed PCF is able to support ultra-wideband single-polarization single-mode (SPSM) transmission from the visible band to the near infrared band. With the aid of the inner cladding formed by the central air holes, one polarization of the fundamental mode can be cut off at very short wavelengths and ultra-wideband SPSM propagation can be achieved. The inner cladding also suppresses the higher order modes and allows large air filling fraction in the outer cladding while the proposed fiber remains SPSM, which significantly reduces the mode effective area and the confinement loss. Our simulation results indicate that the proposed PCF has a 1540 nm SMSP range with <0.25 dB/km confinement loss and an effective area of 2.2 μm2. Moreover, the group velocity dispersion (GVD) of the proposed PCF can also be tuned to be flat and near zero at the near infrared band (∼800 nm) by optimizing the outer cladding structure, potentially enabling many nonlinear applications.  相似文献   

14.
A soft glass dual core polarization splitter based on highly birefringent photonic crystal fiber (PCF) is proposed and the full vector finite element method (FEM) is employed to analyze the impacts of structural parameters on birefringence and the coupling length, and simulation results show that high birefringence on the order of 10−2 can be obtained at 1.55 μm, moreover, hole size, hole pitch and elliptic ratio all affect birefringence and the coupling length. Based on these results, the PCF's structure is optimized to realize a polarization splitter of 282 μm whose largest extinction ratio is around −45.42 dB at 1.55 μm. Meanwhile, the bandwidth at the extinction ratio of −10 dB is about 90 nm, and around 32 nm at −20 dB.  相似文献   

15.
A novel compact wavelength-division multiplexer using highly dispersive waveguide-to-waveguide coupling is designed, simulated and analyzed. The device consists of two very close single-moded waveguides that are periodically connected to form a mode-dependent dispersive grating. It is demonstrated that the wavelengths over the edges of the photonic band gap contributed by the grating can be separated in a very short propagation distance. Using the finite-difference time-domain method, the result shows that the wavelengths of 1570 and 1530 nm are separated by the grating in a coupler length of 57 μm which is much shorter than the required length of about 340 μm without grating assistance. The channel contrast of 20 dB and the insertion loss about 2 dB are achieved.  相似文献   

16.
张心贲  罗兴  程兰  李海清  彭景刚  戴能利  李进延 《物理学报》2014,63(3):34204-034204
在掺镱锁模光纤激光器发出的皮秒脉冲的抽运下,本文报道了双零色散的多芯光子晶体光纤中可见光超连续谱的产生.这种光子晶体光纤的类似同轴双芯结构提供了相隔很近的双零色散点.第二个零色散波长的存在阻止了反常色散区内的由脉冲内拉曼散射引起的孤子的频移,形成了稳态孤子,在短波长和长波长方向上的正常色散区均产生了可观的色散波.在2 W的平均功率下得到了550 nm到1700 nm的超连续谱.此外,光纤的同轴双芯特性也导致了入射脉冲的模式转换.实验结果和数值计算十分符合.  相似文献   

17.
A thin-disc Nd:GdVO4 laser in multi-pass pumping scheme was developed. Continuous-wave output power of 13.9 W at 1.06 μm for an absorbed power at 808 nm of 22 W was demonstrated from a 250-μm thick, 0.5-at.% Nd:GdVO4 in a 4-pass pumping; the slope efficiency in absorbed power was 0.65, or 0.47 in input power. Output performances were also investigated under diode laser pumping at 879 nm, directly into the emitting 4F3/2 level: maximum power of 3.6 W was obtained at 6.2 W of absorbed power with 0.69 slope efficiency. Compared with pumping at 808 nm, into the highly absorbing 4F5/2 level, improvements of laser parameter in absorbed power (increase of slope efficiency, decrease of threshold) were obtained, showing the advantages of the pumping into the emitting level. However, the laser performances expressed vs. the incident power were modest owing to the low absorption efficiency at 879 nm. Thus, increased number of passes of the medium would be necessary in order to match the performances in input power obtained under 808-nm pumping.  相似文献   

18.
An ultra small size 4-channel wavelength division demultiplexer based on 2D photonic crystal modified Y-Branch, suitable for integration, is proposed in this paper. The output wavelengths of designed structure can be tuned for communication applications (around 1550 nm) by choosing suitable defect parameters in the corner of each resonance cavity and output waveguides. The cross section of the structure is 313.28 μm2 (17.8 μm × 17.6 μm) and desirable for integration based on popular planar technology. The bandwidth of each channel is near to 1 nm and the channel spacing is approximately 3.5 nm and wavelengths of demultiplexer channels are 1548.8 nm, 1551.9 nm, 1555.4 nm and 1559.3 nm respectively. Also, the crosstalk is between −33.1855 dB and −10.4947 dB. Furthermore, the mean values of the crosstalk and quality factor are −22.54 dB and 1496.7 respectively.  相似文献   

19.
Highly birefringent dual-core photonic crystal fibers (PCFs) can be used as a polarization splitter because the orthogonal polarization modes with dissimilar coupling lengths are easily separated from each other. Different from the traditional methods achieving high birefringence, a new highly birefringent hybrid PCF that guides light by both index guiding and bandgap guiding is proposed. Firstly, a novel polarization splitter based on this kind of dual-core hybrid PCF is designed. The transmission modes, coupling lengths for the two orthogonal polarizations and performance of the proposed polarization splitter are investigated and numerically analyzed. The results demonstrate that it is possible to obtain a 4.72-mm-long polarization splitter. The splitting ratio is better than −20 dB in a large wavelength range of 1.53-1.72 μm. Its bandwidth is about 190 nm.  相似文献   

20.
The characteristics of a mechanically induced long-period fiber grating (MLPFG) made by pressing a pair of grooved plates over single-mode fiber tapers are analyzed. Fiber tapers with a waist length of 80 mm and diameter ranging from 90 to 125 μm, fabricated using the heating and puling method, were used. We observed that the resonance wavelengths shift toward shorter wavelengths as the fiber taper waist diameter is reduced. A maximum shift of 254 nm in the position of the resonance peaks was observed when the fiber diameter was reduced to 90 μm. This technique is particularly suitable for tuning the resonance wavelengths to shorter wavelengths below the limit imposed by the grooved plate period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号