首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CdSe/CdS核/壳型纳米晶的光谱特性   总被引:7,自引:0,他引:7  
以巯基乙酸为稳定剂制备了CdSe/CdS核/壳型纳米晶。用光吸收谱(Abs)、光致发光谱(PL)及光致发光激发谱(PLE)研究了CdS壳层对CdSe纳米晶电子结构,从而对其吸收和发光性能的影响。根据PL和PLE的结果以及带边激子精细结构的计算结果,我们用尺寸很小的纳米晶中所形成的基激缔合物解释了PL光谱与吸收边之间较大的Stokes位移。  相似文献   

2.
The electronic and optical properties of a single exciton in a CdSe/CdS/CdSe/CdS quantum dot is studied by using effective mass approximation with parabolic confinement. The Coloumbic interaction between electron and hole is included by Hartree potential. A self-consistent technique is used to calculate the energy eigenvalue and wavefunction of exciton. Based on this approximation we investigate the effect of core size, shell thickness, well width on exciton binding energy, absorption spectra, and oscillator strength. The results provide the tuning possibility of electronic and optical properties of multilayer quantum dot with layer thickness.  相似文献   

3.
单核/双壳结构CdSe/CdS/ZnS纳米晶的合成与发光性质   总被引:5,自引:4,他引:1       下载免费PDF全文
以巯基乙酸为稳定剂,在水溶液中合成了单核/双壳结构的CdSe/CdS/ZnS纳米晶。在内核CdSe和外壳ZnS之间的内壳CdS作为晶格匹配调节层,能够很好的改善核/壳界面处的性能,而且,最外层ZnS能够最大程度地使激子受限。用TEM和XPS对纳米晶进行了表征,并且用光致发光光谱和吸收光谱对不同核壳结构的纳米晶的发光性能进行了比较,结果表明单核/双壳结构的纳米晶具有更加优异的发光特性。  相似文献   

4.
采用原位聚合法制备了以ZnO量子点为核、石墨烯量子点(GQDs)为壳的ZnO@ GQDs核壳结构量子点。通过TEM和HR-TEM对量子点进行形貌和结构的分析表征。结果表明,合成的ZnO@ GQDs核壳结构量子点为球形,粒径为~7 nm,且尺寸均匀。PL光谱研究表明,新型量子点的发射峰位于369 nm,发光峰窄、强度高;相对于ZnO的本征发射峰,GQDs的引入使得ZnO@GQDs核壳量子点的荧光发射峰出现蓝移、强度变高,从而使复合量子点的荧光具有较纯的色度和较高的强度,说明GQDs的引入具有协同优化效应。该量子点有望应用于LED显示器件。  相似文献   

5.
利用400 nm和800 nm不同波长的低强度飞秒激光,对CdTe和CdTe/CdS核壳量子点溶胶进行激发,研究其稳态和时间分辨荧光性质.800 nm飞秒激光激发下,CdTe和CdTe/CdS核壳量子点产生上转换发光现象,上转换荧光峰与400 nm激发下的荧光峰相比蓝移最多达15 nm,而且蓝移值与荧光量子产率有关.变功率激发确认激发光功率与上转换荧光强度间满足二次方关系,时间分辨荧光的研究表明荧光动力学曲线服从双e指数衰减.提出表面态辅助的双光子吸收模型是低激发强度上转换发光的主要机理.CdTe和CdT 关键词: CdTe量子点 CdTe/CdS核壳量子点 时间分辨荧光 上转换荧光  相似文献   

6.
基于密度泛函理论(DFT)的第一性原理研究了Fe,Ni单掺杂和(Fe,Ni)共掺杂CdS的能带结构、电子态密度分布、介电常数和光学吸收系数,分析了掺杂后电子结构和光学性质的变化.计算结果表明:掺杂体系的CdS晶格常量均减少,能带宽度减小,介电函数虚部ε2(ω)都在0.53 eV左右出现了一个新峰,吸收光谱发生明显的红移,它们均在1.35 eV处出现较强吸收峰.  相似文献   

7.
Quantum dots have received great interest due to their excellent optoelectronic properties. However, the surface defects of quantum dots affect the carrier transport and ultimately reduce the photovoltaic efficiency. In this paper, a core–shell quantum dot by hot-injection method is prepared to grow a narrow-band semiconductor layer (CuInSe2 (CISe) quantumdot) on the surface of a broad-band core material (cadmium sulfide (CdS) nanocrystal). The composition, structure, optical properties, and decay lifetime of CdS/CISe core–shells are investigated in more detail by X-ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence (PL), UV–vis spectrophotometry, and fluorescence spectroscopy. The CdS/CISe core–shell structure has a broadened absorption range and still shows CISe-related quantum effects. The increased size of the core–shell and the smaller specific surface area of the CISe shell layer lead to a lower carrier complexation chance, which improves the carrier lifetime.  相似文献   

8.
CdSe/CdS core/shell nanocrystals have been synthesized through a low cost and simple two-phase thermal route. The optical spectroscopy and structural characterization evidenced the core/shell structure of the CdSe/CdS nanoparticles. The X-ray diffraction patterns of CdSe and CdSe/CdS nanoparticles exhibited peak positions corresponding to those of their bulk cubic crystal structures. The X-ray photoelectron spectroscopy data confirmed the elemental composition of the CdSe/CdS nanoparticles. The absorption spectra of core/shell nanoparticles showed red shift with respect to the core CdSe nanoparticles. The photoluminescence study indicates that the intensity of the emission maximum is considerably increased in the core/shell structure as compared with the parent material, and the capping of CdS nanoparticles with CdSe material exhibit a near band-edge emission, indicating a successful passivation by removing surface defects. The high-resolution transmission microscope images of the bare and core/shell nanoparticles ascertained the monodispersed and well-defined spherical particles. The average particle sizes for CdSe and CdSe/CdS nanoparticles are 2.5 and 5 nm, respectively, thus confirming, the larger diameter of CdSe/CdS core/shell nanostructure than the core CdSe nanoparticles.  相似文献   

9.
2 + Na2S → CdS + 2NaCl induced by mechanical milling resulted in the formation of CdS particles with an average diameter of < 8 nm. The average particle size was controlled within the range of 4 to 8 nm by varying the size of the grinding media. The onset energy of optical absorption showed a blue shift with decreasing particle size. Received: 29 August 1997/Accepted: 25 September 1997  相似文献   

10.
The novel CdS–ZnS core–shell nanoparticles are synthesized using simple one-step aqueous chemical approach. 3-mercaptopropionic acid (MPA) was used as the capping molecule. The structural and optical properties of the prepared samples are characterized by X-ray diffraction (XRD), UV–vis absorption spectroscopy, photoluminescence (PL) spectroscopy, energy-dispersive X-ray (EDX) and transition electron microscopy (TEM). The studies show that pH contributed noticeably to the growth and optical properties of nanoparticles. The TEM results indicate that the prepared particles have core–shell structure.  相似文献   

11.
A simple method for synthesis of well dispersed cadmium sulphide nanoparticles embedded in a polyethylene glycol matrix (PEG 400) in thin film form is presented. The large blue shift of the band gap energy of the CdS nanoparticles compared to the bulk semiconductors is observed via UV-vis absorption spectra. Photoluminescence spectra of CdS nanocomposite films show that the emission peaks shift towards the longer wavelength with the increase of annealing temperature. Transmission electron microscopic images as well as Raman scattering studies confirm the CdS nanometer size particle formation within the polymer matrix. The particle size is about 8 nm. Selected area electron diffraction (SAED) shows the cubic zinc blende polycrystalline rings. Third-order optical nonlinearity of the CdS nanopartieles embedded in polymer thin films is studied with the Z-scan technique under 1064 nm excitation. The results show that the CdS nanocomposite film exhibits negative nonlinear refraction index and positive absorption coefficient. The film shows large optical nonlinearity, and the magnitude of the third-order nonlinear susceptibility of the film is calculated to be 1.73 × 10^-9 esu. The corresponding mechanism is discussed.  相似文献   

12.
We synthesize colloidal CdSe/CdS core/shell quantum dots with different shell thicknesses, and there are five samples including CdSe core dots, and CdSe/CdS core/shell dots with 1-4 CdS layers. X-ray diffraction and Raman measurements indicate that the stress in CdSe core becomes stronger with the increasing shell thickness, and the optical measurements show that when the shell becomes thicker, the photoluminescence quantum yield is enhanced, and the radiative decay is also expedited. The temperature-dependent optical spectra are measured. The relation between the microstructure and the optical properties is discussed.  相似文献   

13.
CdS半导体超微粒样品光谱性质的研究   总被引:3,自引:0,他引:3  
纳米尺度的半导体超微粒在线性和非线性光学方面表现出来的奇特性质使其成为研究和开发新的功能材料的热点。成键为 S、P轨道的 - 族金属硫化物半导体 ,电子结构和晶体结构均较为简单 ,结晶性能好 -界面无序结构少 ,在纳米尺度上其结构仍与体相材料近似 ,因此 ,成为研究量子尺寸效应的理想材料。本文对采用化学微乳液法合成的 Cd S半导体超微粒的光谱性质进行了研究 ,实验结果显示 ,Cd S超微粒样品的吸收光谱的带边与体相相比发生了蓝移 ;从吸收光谱中可以看到 ,Cd S超微粒样品的吸收边随粒径减少而向短波方向移动。拉曼光谱的电子—— L O声子耦合在粒子尺寸 2 .4- 2 .9nm范围内与粒子尺寸无关  相似文献   

14.
Worasak Sukkabot 《哲学杂志》2018,98(15):1360-1375
A study of CdTe/CdX (X=S and Se)/ZnS core/shell/shell nanocrystals is carried out using atomistic tight-binding theory and the configuration interaction method to provide information for applications in bioimaging, biolabeling, display devices and near-infrared electronic instruments. The calculations yield the dependences of the internal and external passivated shells on the natural behaviours of CdTe/CdX (X=S and Se)/ZnS core/shell/shell nanocrystals. The reduction of the optical band gaps is observed with increasing numbers of monolayers in the external ZnS shell due to quantum confinement. Interestingly, the optical band gaps of CdTe/CdS/ZnS core/shell/shell nanocrystals are greater than those of CdTe/CdSe/ZnS core/shell/shell nanocrystals. In the presence of an external ZnS-coated shell, electron–hole wave function overlaps, oscillation strengths, ground-state exchange energies and Stokes shift are improved, whereas ground-state coulomb energies and fine-structure splitting are reduced. The oscillation strengths, Stokes shift and fine-structure splitting are reduced with the increase in external ZnS shell thickness. The oscillation strengths, Stokes shift and fine-structure splitting of CdTe/CdS/ZnS core/shell/shell nanocrystals are larger than those of CdTe/CdSe/ZnS core/shell/shell nanocrystals. Reduction of the atomistic electron–hole interactions is observed with increasing external ZnS shell size. The strong electron–hole interactions are more probed in CdTe/CdS/ZnS core/shell/shell nanocrystals than in CdTe/CdSe/ZnS core/shell/shell nanocrystals.  相似文献   

15.
水溶胶CdSe/CdS核/壳结构纳米晶制备及光学性质的研究   总被引:16,自引:3,他引:13  
以巯基乙酸为稳定剂在水溶液中合成了水溶胶CdSe/CdS核/壳结构的量子点,利用X射线粉末衍射(XRD)和X射线光电子能谱(XPS)对量子点结构进行了表征;并对化学组成和尺寸分布进行了研究。通过紫外-可见吸收光谱、激发光谱与发射光谱研究了它们的发光特性。  相似文献   

16.
The effect of high electronic energy deposition on the structure, surface topography, optical properties, and electronic structure of cadmium sulfide (CdS) thin films have been investigated by irradiating the films with 100 MeV Ag+7 ions at different ion fluences in the range of 1012–1013 ions/cm2. The CdS films were deposited on glass substrate by thermal evaporation, and the films studied in the present work are polycrystalline with crystallites preferentially oriented along (002)-H direction. It is shown that swift heavy ion (SHI) irradiation leads to grain agglomeration and hence an increase in the grain size at low ion fluences. The observed lattice compaction was related to irradiation induced polygonization. The optical band gap energy decreased after irradiation, possibly due to the combined effect of change in the grain size and in the creation of intermediate energy levels. Enhanced nonradiative recombination via additional deep levels, introduced by SHI irradiation was noticed from photoluminescence (PL) analysis. A shift in the core levels associated with the change in Fermi level position was realized from XPS analysis. The chemistry of CdS film surface was studied which showed profound chemisorption of oxygen on the surface of CdS.  相似文献   

17.
采用反胶束法,合成了具有不同尺寸的CdS纳米颗粒。利用透射电镜(TEM)和高分辨透射电镜(HR-TEM)以及紫外-可见光吸收谱(UV/vis)对这些纳米颗粒的结构特性进行了表征和分析。利用拉曼光谱仪测量了这些具有不同尺寸的CdS纳米颗粒的拉曼特性。研究结果表明:当纳米颗粒尺寸小于一定值时,拉曼峰出现了蓝移,大于一定值时出现了红移,这些不同的结果是与纳米颗粒的尺寸效应以及纳米颗粒结构中具有各向异性的电子-声子耦合作用有关。  相似文献   

18.
CdS/SiO_2半导体玻璃复合材料的低频Raman散射光谱研究王凯旋,隗罡,黄建滨,戴庆红,赵壁英,桂琳琳,谢有畅,唐有祺(北京大学物理化学研究所北京100871)AStudyofCdSSemieonductorinSilicaGlassesbyL...  相似文献   

19.
Cobalt-doped cadmium sulphide (CdS) nanocrystals (NCs) were synthesized with three different cobalt concentrations by aqueous chemical coprecipitation method. Dopant incorporation was recognised using X-ray diffraction (XRD) analysis with a shift in the diffraction peaks and compression in the lattice. The size and crystallinity of the cobalt-doped CdS NCs were studied by high resolution transmission electron microscopy (HRTEM). The blue shift in the spectra and the band gap value of Co-doped CdS NCs was estimated using reflectance UV spectrophotometer. Variation in the luminescence properties was studied by fluorescence spectroscopy. The change in the optical properties supports the Co incorporation in the CdS NCs. The BET measurement revealed that the powders had a relatively high specific surface area of 131.30, 106.93 and 102.04 m2/g for 2, 4 and 6% Co:CdS, respectively. Room temperature magnetisation was studied using vibrating sample magnetometer for both 4 and 6% cobalt-doped CdS NCs, which revealed a weak ferromagnetic signal and strong ferromagnetic hysteresis respectively.  相似文献   

20.
The luminescent properties of hybrid nanostructures constructed from colloidal quantum dots (QDs) of CdS passivated with thioglycolic acid, europium(III) tris(tenoyltrifluoroacetonate), and methylene blue dye molecules are studied. Spectral features typical for the formation of core/shell QDs of the CdS/CdS:Eu3+ type are found. It is noted that the adsorption of the europium complex at the QD interfaces and the formation of QDs of the CdS/TGA/Eu3+ are probable. Spectral patterns that reveal nonradiative energy transfer from the recombination luminescence centers of CdS QDs to the Eu3+ ions in the CdS/CdS:Eu3+ and CdS/TGA/Eu3+ structures are obtained. This is manifested in quenching the recombination luminescence of QDs and in the ignition of the intracentric luminescence of Eu3+, which enhance with an increase in the concentration of the europium complex. When such structures are combined with methylene blue molecules, the half-width of the absorption spectra is found to increase by 10–15% with an unchanged position of the absorption band maximum. With an increase in the concentration of methylene blue molecules, decreases in the intensity of the recombination luminescence band of CdS QDs at a wavelength of 530 nm and in the luminescence intensity of Eu3+ ions and simultaneously the rise up of the fluorescence of methylene blue at a wavelength of about 675 nm are observed. At the same time, a decrease in the luminescence lifetime of the bands of QDs and europium ions are observed. It is concluded that the nonradiative excitation energy transfer from both the recombination luminescence centers and Eu3+ ions to methylene blue molecules takes place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号