首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal thin film ablation with femtosecond pulsed laser   总被引:2,自引:0,他引:2  
Micromachining thin metal films coated on glass are widely used to repair semiconductor masks and to fabricate optoelectrical and MEMS devices. The interaction of lasers and materials must be understood in order to achieve efficient micromachining. This work investigates the morphology of thin metal films after machining with femtosecond laser ablation using about 1 μm diameter laser beam. The effect of the film thickness on the results is analyzed by comparing experimental images with data obtained using a two-temperature heat transfer model. The experiment was conducted using a high numerical aperture objective lens and a temporal pulse width of 220 fs on 200- and 500-nm-thick chromium films. The resulting surface morphology after machining was due to the thermal incubation effect, low thermal diffusivity of the glass substrate, and thermodynamic flow of the metal induced by volumetric evaporation. A Fraunhofer diffraction pattern was found in the 500-nm-thick film, and a ripple parallel to the direction of the laser light was observed after a few multiple laser shots. These results are useful for applications requiring micro- or nano-sized machining.  相似文献   

2.
We demonstrate a high power continuous wave (CW) diode-side-pumped Nd:YAG laser operating at 1123 nm with a plano-plano configuration. By means of precise coating, a single 1123 nm wavelength is achieved. Under the pump power of 1080 W, an output power of 219.3 W is obtained, which corresponds to an optical-optical conversion efficiency of 20.3%. To the best of our knowledge, this is the highest output power for CW 1123 nm laser based on Nd:YAG crystal.  相似文献   

3.
A Nd:YAG laser is environmentally safe and economical with no poisonous or hazardous gases and no expensive gases. We prepared Y123 films by using the fourth harmonic Nd:YAG pulsed laser deposition (PLD) method and optimized the deposition conditions on MgO single crystalline substrates and IBAD-MgO substrates for Y123 coated conductor. We found that the optimal deposition conditions acquired bi-axially aligned Y123 films on both substrates with Tc ∼ 90 K and Jc > 1 MA/cm2 at 77 K in self-field. For obtaining high Ic, we fabricated thick Y123 films on both substrates and the maximum Ic per 1 cm in width reached 186 A/cm-width on the IBAD-MgO substrate. Interestingly, there were no a-axis oriented grains within the films up to 1.8 μm thick. This might be an especial feature of the Nd:YAG-PLD method. We believe that the Nd:YAG-PLD method is promising method for RE123 coated conductor production.  相似文献   

4.
This work reports on laser welding of two 1 mm thickness borosilicate glasses through the irradiation with a nanosecond pulsed laser, as a novel alternative to the use of ultrashort pulsed lasers for welding of transparent materials. Two different methodologies were investigated and compared in terms of interface quality. In a first approach, the glasses were joined without any absorbing intermediate layer. However, the bond interface possesses defects. To improve the resulting bond interface, the use of a titanium ultrathin intermediate layer was proposed to weld the glasses substrates, acting as a sealant between them. The laser parameters were optimized to achieve the best joining conditions of the Ti film. The use of the Ti layer gives rise to a bond interface more homogeneous and free of damages. As a further step, thin glasses of 86 µm thickness, of great technological value, were joined through the Ti film as well. The joined interfaces were inspected through optical microscopy and scanning electron microscopy (SEM) while the bond quality was evaluated by Scanning Acoustic Microscopy (SAM).  相似文献   

5.
A Nd:YAG laser pumped by a Kr-flashlamp with simultaneous dual-wavelength operation at 1357 nm (4F3/2 → 4I13/2(R1 → X4)) and 1444 nm (4F3/2 → 4I13/2(R1 → X7)) is demonstrated and its characteristics was analyzed. The output energy of 82 mJ at 1357 nm and 138 mJ at 1444 nm were achieved simultaneously with the maximum electrical input energy of 44 J. Stability of the output energy in the dual-wavelength operation was 1.41% at the maximum input energy of 44 J. However, the stabilities at each wavelength in the dual-wavelength operation showed much lower stability.  相似文献   

6.
Nanosecond (ns) laser ablation can provide a competitive solution for silicon micromachining in many applications. However, most of the previous studies focus on ns lasers at visible or ultraviolet (UV) wavelengths. The research is very limited for ns lasers at infrared (e.g., 1064 nm) wavelengths (which often have the advantage of much lower cost per unit average output power), and the research is even less if the ns laser also has a long pulse duration on the order of ∼100 ns. In this paper, time-resolved observation using an ICCD (intensified charge-coupled device) camera has been performed to understand the physical mechanism of silicon ablation by 200-ns and 1064-nm laser pulses. This kind of work has been rarely reported in the literature. The research shows that for the studied conditions, material removal in laser silicon ablation is realized through surface vaporization followed by liquid ejection that occurs at a delay time of around 200-300 ns. The propagation speed is on the order of ∼1000 m/s for laser-induced plasma (ionized vapor) front, while it is on the order of ∼100 m/s or smaller for the front of ejected liquid. It has also been found that the liquid ejection is very unlikely due to phase explosion, and its exact underlying physical mechanism requires further investigations.  相似文献   

7.
Frequency-tripled Nd:YAG laser ablation in laser structuring process   总被引:1,自引:0,他引:1  
With the increasing demand for finer lines/spaces on PCB boards, a new technology—laser structuring—has emerged in recent years. In this research, the frequency-tripled Nd:YAG laser is selected as the laser source in laser structuring; this laser is often used in miniaturization machining. This paper describes in detail the processing parameters’ influences, such as laser power, numbers of repetition, repetition rate and bite size, on laser structuring results. From the research results, it can be concluded that the line width and depth are increased with increases in the laser power and numbers of repetition. Repetition rate, bite size and velocity are related to one another. When the bite size is fixed, the velocity increases with the repetition rate and the depth of the line is decreased at the same time. When the repetition rate is fixed, velocity increases with the bite size.  相似文献   

8.
通过时空分辨的光谱测量技术,测定了在环境气压下,Nd:YAG脉冲激光烧蚀金属Cu产生等离子体的总辐射随时间与空间的强度分布,研究了烧蚀环境气压对总辐射强度的影响,提出了电子碰撞与复合激发模型。  相似文献   

9.
A study of silicon modification induced by a high intensity picosecond Nd:YAG laser, emitting at 1064 nm, is presented. It is shown that laser intensities in the range of 5 × 1010-0.7 × 1012 W cm−2 drastically modified the silicon surface. The main modifications and effects can be considered as the appearance of a crater, hydrodynamic/deposition features, plasma, etc. The highest intensity of ∼0.7 × 1012 W cm−2 leads to the burning through a 500 μm thick sample. At these intensities, the surface morphology exhibits the transpiring of the explosive boiling/phase explosion (EB) in the interaction area. The picosecond Nd:YAG laser-silicon interaction was typically accompanied by massive ejection of target material in the surrounding environment. The threshold for the explosive boiling/phase explosion (TEB) was estimated to be in the interval 1.0 × 1010 W cm−2 < TEB ≤ 3.8 × 1010 W cm−2.  相似文献   

10.
We report on to our knowledge the first time a diode-side-pumped simultaneous dual-wavelength Nd:YAG laser at 1116 and 1123 nm. By inserting an etalon to balance the gain and loss, a stable dual-wavelength oscillation is acquired. The numerical simulations for wavelength tuning are discussed by principles of laser threshold and Fabry-Perot etalon. Under the pump power of 250 W, a total output power of 23 W is obtained. Meanwhile, the two components have approximately equal intensities. The beam quality of M2 factor was measured to be 7.52.  相似文献   

11.
报道了一种腔内六棒串接的脉冲Nd:YAG激光器。采用44矩阵对晶体棒失调角度对谐振腔光轴的影响进行了理论分析,给出了六棒串接脉冲激光器中晶体棒失调角度的允许范围。在串接实验中,谐振腔采用对称平平腔结构,通过调整每根晶体棒的失调角度到允许范围内,实现了六棒串接脉冲Nd:YAG激光器。在输入电功率86 kW,占空比17%时,获得了平均功率3 018 W的脉冲激光输出,峰值功率17.75 kW,最高单脉冲能量为66 J,光束参数乘积为26.3 mmmrad,电光转换效率3.5%,长时间工作不稳定性小于2%。  相似文献   

12.
In this study, results in the irradiation of stainless steel AISI 304 in air with nanosecond laser pulses at laser irradiation power density 4×107 W/cm2 are reported. Laser processing parameters, such as wavelengths 532 and 1064 nm, pulse duration 20 ns and repetition rate 10 Hz were used. It is shown that the surface morphology of the stainless steel is related to the number of pulses applied to the same spot. The following surface morphological changes were observed: (i) occurrence of the micro-grains microstructures at wavelengths 532 and 1064 nm after 10 000 pulses irradiation and (ii) occurrence of vermiform-like microstructures at wavelength 1064 nm after 1000 pulses irradiation. Generally, it is concluded that irradiation due to several consecutive pulses caused significant damage and enhanced the stainless steel surface roughness.  相似文献   

13.
Interaction of an Nd:YAG laser, operating at 1064 or 532 nm wavelength and pulse duration of 40 ps, with titanium implant was studied. Surface damage thresholds were estimated to 0.9 and 0.6 J/cm2 at wavelengths 1064 and 532 nm, respectively. The titanium implant surface modification was studied by the laser beam of energy density of 4.0 and 23.8 J/cm2 (at 1064 nm) and 13.6 J/cm2 (at 532 nm). The energy absorbed from the Nd:YAG laser beam is partially converted to thermal energy, which generates a series of effects, such as melting, vaporization of the molten material, shock waves, etc. The following titanium/implant surface morphological changes were observed: (i) both laser wavelengths cause damage of the titanium in the central zone of the irradiated area, (ii) appearance of a hydrodynamic feature in the form of resolidified droplets of the material in the surrounding outer zone with the 1064 nm laser wavelength and (iii) appearance of wave-like microstructures with the 532 nm wavelength. Generally, both laser wavelengths and the corresponding laser energy densities can efficiently enhance the titanium/implant roughness. This implant roughness is expected to improve its bio-integration. The process of the laser interaction with titanium implant was accompanied by formation of plasma.  相似文献   

14.
Nd:YAG激光器切割金刚石膜的特性研究   总被引:2,自引:0,他引:2  
顾长志  金曾孙 《光学学报》1997,17(10):469-1471
采用Nd:YAG激光器对金刚石膜进行切割,研究了激光器在不同输出功率下切割金刚石膜的速率和切割深度与时间的关系,以及Nd:YAG激光器切割的金刚石膜在成份和形状上的变化特点,给出了比较理想的切割工艺条件。  相似文献   

15.
Interaction of Nd:YAG laser, operating at 1064 or 532 nm wavelength and a pulse duration of 40 ps, with AISI 1045 steel was studied. Surface damage thresholds were estimated to be 0.30 and 0.16 J/cm2 at the wavelengths of 1064 and 532 nm, respectively. The steel surface modification was studied at the laser energy density of 10.3 J/cm2 (at 1064 nm) and 5.4 J/cm2 (at 532 nm). The energy absorbed from Nd:YAG laser beam is partially converted to thermal energy, which generates a series of effects, such as melting, vaporization of the molten material, shock waves, etc. The following AISI 1045 steel surface morphological changes and processes were observed: (i) both laser wavelengths cause damage of the steel in the central zone of irradiated area; (ii) appearance of a hydrodynamic feature in the form of resolidified droplets of the material in the surrounding outer zone with 1064 nm laser wavelength; (iii) appearance of periodic surface structures, at micro- and nano-level, with the 532 nm wavelength and, (iv) development of plasma in front of the target. Generally, interaction of laser beam with the AISI 1045 steel (at 1064 and 532 nm) results in a near-instantaneous creation of damage, meaning that large steel surfaces can be processed in short time.  相似文献   

16.
Interaction of Nd:YAG laser, operating at 266 nm wavelength and a pulse duration of 40 ps, with AISI 1045 steel was studied. Surface damage threshold was estimated to be 0.14 J/cm2. The steel surface modification was studied at the laser fluence of ∼1.0 J/cm2. The energy absorbed from Nd:YAG laser beam is partially converted to thermal energy, which generates a series of effects, such as melting, vaporization of the molten material, shock waves, etc. The following AISI 1045 steel surface morphological changes and processes were observed: (i) intensive damage of the target in the central zone of irradiated area; (ii) appearance of periodic surface structures at nano-level, with periodicity in agreement with the used wavelength; (iii) reduction of oxygen concentration in irradiated area; and (iv) development of plasma in front of the target. Generally, interaction of laser beam with AISI 1045 steel (at 266 nm) results in a near-instantaneous creation of damage, meaning that large steel surfaces can be modified in short times.  相似文献   

17.
The laser oscillating at a weak line of Nd:YAP around 1.3-μm realized though selecting polarization is described. The energy level transitions of Nd:YAP crystal and their polarization properties were analyzed. A thin-film polarizer was adopted to restrain the oscillating of the c-axis strong polarized spectral lines and a reasonable transmittance was designed to suppress the a-axis polarized 1064 nm strong line lasing, and then a-axis polarized 1339 nm pulse laser of 336 mJ for free running mode and 64 mJ for electro-optic Q-switched mode were successfully achieved, corresponding to pulse widths of 180 μs and 35 ns, respectively. This method of selecting polarization to realize weak line oscillating is significant for anisotropic laser crystals doped with Nd3+ ions to select the particular transitions.  相似文献   

18.
HighpowerNd:YAGslablasersidepumpedbydiodelaserarrayCHENYouming;ZHOUFuzheng;HUWentao;LIZhishen;YANGXiangchun;WangZhijiang(Shan...  相似文献   

19.
刘欢  王巍  巩马理 《物理学报》2013,62(14):144205-144205
报道了一种适合中小功率输出的全固态激光器的角抽运方法, 抽运光从板条激光器中板条晶体的角部入射, 可获得较高的抽运效率和较好的抽运均匀性.采用单角抽运方式, 首次进行了角抽运Nd:YAG复合板条946 nm连续运转激光器的实验研究. 激光腔采用紧凑型平凹直腔结构, 腔长仅为20 mm. 当注入抽运功率为50 W时, 946 nm激光连续输出功率最高达5.29 W, 光光转换效率为10.6%, 斜效率为12%. 整台激光器结构紧凑, 调谐简单, 成本低, 具有广阔的应用前景. 关键词: 角抽运 Nd:YAG晶体 连续波 946 nm激光  相似文献   

20.
A Nd:CNGG laser operated at 935 nm and 1061 nm pumped at 885 nm and 808 nm, respectively, is demonstrated. The 885 nm direct pumping scheme shows some advantages over the 808 nm traditional pumping scheme. It includes higher slope efficiency, lower threshold, and better beam quality at high output power. With the direct pumping, the slope efficiency increases by 43% and the threshold decreases by 10% compared with traditional pumping in the Nd:CNGG laser operated at 935 nm. When the Nd:CNGG laser operates at 1061 nm, the direct pumping increases the slope efficiency by 14% with a 20% reduction in the oscillation threshold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号