首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystal and molecular structures of three Al(III) complexes of the tripod ligand 2,2′,2″-nitrilotriphenolate ( I ) are presented. They all show 5-coordinate Al in approximately trigonal bipyramidal geometry, with an external nucleophile X occupying the second axial position. X is OH? in[Al( I )(OH)]?[Hquin]+ (quin = quinuclidine), N in [Al( I )(py)] (py = pyridine), and one of the O-atoms of a second molecule in the dimeric [(Al( I ))2]. Correlated variations in the axial bond lengths of the trigonal bipyramid are observed: [(Al( I ))2]: Al–Nint. = 2.094 Å, Al–Oext. = 1.850 Å; [Al( I )(py)]: Al–Nint. = 2.153 Å, Al–Next., = 1.992 Å; [Al( I )(OH)]?: Al–Nint. = 2.278 Å, Al–Oext. = 1.765 Å. They are interpreted in terms of a dissociative reaction path at the Al(III) centre.  相似文献   

2.
The tetradentate ligand 2,2′,2″-nitrilotriphenol forms a boron complex III with an intramolecular, transannular N→B dative bond of 1.68 Å in a strained tricyclo[3.3.3.0]undecane chelating system. The complex reacts with nitrogen bases L, such as pyridine, quinuclidine and others, to form complexes III-L , in which the intramolecular B–N bond is replaced by one between B and the external nucleophile. In solution, this displacement reaction is reversible. It was studied by temperature-dependent NMR spectroscopy. The resulting reaction and activation parameters suggest that the reaction is a bimolecular nucleophilic substitution (SN2).  相似文献   

3.
The Ru—N bond distances in the title complex, [Ru(NO2)(C11H9N3)(C15H11N3)]BF4 or [Ru(NO2)(tpy)(azpy)]BF4, [tpy is 2,2′:6′,2′′‐ter­pyridine and azpy is 2‐(phenyl­azo)­pyridine], are Ru—Npy 2.063 (4), Ru—Nazo 2.036 (4), Ru—Nnitro 2.066 (3) Å, and Ru—Ntpy 2.082 (4), 1.982 (3) and 2.074 (4) Å. The azo N atom is trans to the nitro group. The azo N=N bond length is 1.265 (5) Å, which is the shortest found in such complexes to date. This indicates a multiple bond between Ru and the N atom of the nitro group, and π‐­backbonding [dπ(Ru) π*(azo)] is decreased.  相似文献   

4.
The ligand 2,2′,2″-nitrilotriphenol reacts with P(III) and P(V) compounds to form corresponding phosphorus complexes. Syntheses and NMR data of 2,2′,2″-nitrilotriphenyl phosphite ( II ), 2,2′,2″-nitrilotriphenyl phosphate ( III ) and of a hydrolysis product of II , 2,2′-[N-(2-hydroxyphenyl)imino]diphenly phosphonate ( IV ), are reported, as well as crystal structures of II and IV . Phosphite II shows a bicycloundecane framework; no N?Pinteraction is present. The phosphonate IV shows two coordinated and one dangling phenol group; the N-atom does not interact with the P-atom. Strong acids protonate II as well as III to form cations: in these, NMR evidence indicates coordination of the N-atom to the P-atom.  相似文献   

5.
The title compound, [4′‐(4‐bromophenyl)‐2,2′:6′,2′′‐terpyridine]chlorido(trifluoromethanesulfonato)copper(II), [Cu(CF3O3S)Cl(C21H14BrN3)], is a new copper complex containing a polypyridyl‐based ligand. The CuII centre is five‐coordinated in a square‐pyramidal manner by one substituted 2,2′:6′,2′′‐terpyridine ligand, one chloride ligand and a coordinated trifluoromethanesulfonate anion. The Cu—N bond lengths differ by 0.1 Å for the peripheral and central pyridine rings [2.032 (2) (mean) and 1.9345 (15) Å, respectively]. The presence of the trifluoromethanesulfonate anion coordinated to the metal centre allows Br...F halogen–halogen interactions, giving rise to the formation of a dimer about an inversion centre. This work also demonstrates that the rigidity of the ligand allows the formation of other types of nonclassical interactions (C—H...Cl and C—H...O), yielding a three‐dimensional network.  相似文献   

6.
A series of organonickel complexes [(R′terpy)Ni(aryl)]X (R′terpy = derivatives of 2,2′;6′,6″‐terpyridine; R′ = 4‐H, 4‐Cl, 4‐Tol and 4,4′,4″‐tBu3; aryl = 2,6‐dimethylphenyl = Xyl or 2,4,6‐trimethylphenyl = Mes; X = Br or PF6) have been prepared and characterized. The crystal structures exhibit a number of intermolecular H bond type interactions, but the structure determining force seems to be the packing of the aryl co‐ligands. The molecules reveal rather undistorted square planar coordination with a N3C ligand set, the central Ni–N bond being remarkably short, despite the expected strong trans influence of the aryl co‐ligands. The long‐wavelength absorptions were assigned to charge transfer transitions. No emission is observed at ambient temperature in the solid and in solution and at low temperature in glasses.  相似文献   

7.
Preparation of Halogeno Pyridine Rhenates(III), [ReX6?n(Py)n](3?n)? (X = Br, Cl; n = 1?3) Crystal Structures of trans-[(C4H9)4N][ReBr4(Py)2], mer-[ReCl3(Py)3], and mer- [ReBr3(Py)3] The mixed halogeno-pyridine-rhenates(III), [ReX6?n(Py)n](3?n)? (X = Br, Cl), n = 1?3, have been prepared for the first time by reaction of the tetrabutylammoniumsalts (TBA)2[ReX6] (X = Br, Cl) in pyridine with (TBA)BH4 and separation by chromatography on Al2O3. Apart from the monopyridine complexes only the trans and mer isomers are formed from the bis-and tris-pyridine compounds. The X-ray structure determinations of the isotypic neutral complexes mer- [ReX3(Py)3] (monoclinic, space group P 21/n, Z = 4; for X = Cl: a = 9,1120(8), b = 12,5156(14), c = 15,6100(13) Å, β = 91,385(7)°; for X = Br: a = 9,152(5), b = 12,852(13), c = 15,669(2) Å, β = 90,43(2)°) reveal, due to the stronger trans influence of pyridine compared with Cl and Br, that the Re? X distances in asymmetric Py? Re? X3 axes with ReCl3 = 2,397 Å and ReBr3 = 2,534 Å are elongated by 1,3 and 1% in comparison with symmetric X1? Re? X2 axes with ReCl1 = ReCl2 = 2,367 Å and ReBr1 = 2,513 and ReBr2 = 2,506 Å, respectively. The Re? N bond lengths are roughly equal with 2,12 Å. Trans-(TBA)[ReBr4(Py)2] crystallizes triclinic, space group P1 , a = 9,2048(12), b = 12,0792(11), c = 15,525(2) Å, α = 95,239(10), β = 94,193(11), γ = 106,153(9)°, Z = 2. The unit cell contains two independent but very similar complex anions with approximate D2h(mmm) point symmetry.  相似文献   

8.
The aldehyde moiety in the title complex, chloro(2‐pyridinecarboxaldehyde‐N,O)(2,2′:6′,2′′‐terpyridine‐κ3N)ruthenium(II)–chloro­(2‐pyridine­carboxyl­ic acid‐N,O)(2,2′:6′,2′′‐ter­pyridine‐κ3N)­ruthenium(II)–perchlorate–chloro­form–water (1.8/0.2/2/1/1), [RuCl­(C6H5NO)­(C15H11N3)]1.8[RuCl­(C6H5­NO2)(C15H11N3)]0.2­(ClO4)2·­CHCl3·­H2O, is a structural model of substrate coordination to a transfer hydrogenation catalyst. The title complex features two independent RuII complex cations that display very similar distorted octahedral coordination provided by the three N atoms of the 2,2′:6′,2′′‐ter­pyridine ligand, the N and O atoms of the 2‐pyridine­carbox­aldehyde (pyCHO) ligand and a chloride ligand. One of the cation sites is disordered such that the aldehyde group is replaced by a 20 (1)% contribution from a carboxyl­ic acid group (aldehyde H replaced by carboxyl O—H). Notable dimensions in the non‐disordered complex cation are Ru—N 2.034 (2) Å and Ru—O 2.079 (2) Å to the pyCHO ligand and O—C 1.239 (4) Å for the pyCHO carbonyl group.  相似文献   

9.
The title compound {systematic name: 2,2′‐[1,3‐propanediyldioxydi‐o‐phenylenebis(nitrilomethylidyne)]diphenol}, C29H26N2O4, exists as the phenol–imine form in the crystal, and there are strong intramolecular O—H⋯N hydrogen bonds, with O⋯N distances of 2.545 (2) and 2.579 (2) Å. The C=N imine bond distances are in the range 1.276 (2)–1.279 (2) Å and the C=N—C bond angles are in the range 123.05 (16)–124.64 (17)°. The configurations about the C=N bonds are anti (1E).  相似文献   

10.
The sterically encumbered ter­phenyl halides 2′‐chloro‐2,2′′,4,4′′,6,6′′‐hexaisopropyl‐1,1′:3′,1′′‐terphenyl, C36H49Cl, (I), 2′‐bromo‐2,2′′,4,4′′,6,6′′‐hexaisopropyl‐1,1′:3′,1′′‐terphenyl, C36H49Br, (II), and 2′‐iodo‐2,2′′,4,4′′,6,6′′‐hexaisopropyl‐1,1′:3′,1′′‐terphenyl, C36H49I, (III), crystallize in space group Pnma. They are isomorphous and isostructural with a plane of symmetry through the centre of the mol­ecule. The C–halide bond distances are 1.745 (3), 1.910 (4) and 2.102 (6) Å for (I)–(III), respectively.  相似文献   

11.
An X‐ray crystal study of the new ‘black dye’ sensitizer tri(thiocyanato)(4,4′,4″‐tricarboxy‐2,2′:6′,2″‐terpyridine)ruthenium(II) is reported. In the crystal, strong hydrogen bonds form chains of ruthenium complex dianions with the O···O distances of 2.48–2.54 Å. From the molecular geometry of the dianions, structural models of their close packing on the (101) and (001) crystal surfaces of TiO2 (anatase) have been built. The maximum possible density of molecular packing noticeably exceeds the experimental value. The hydrogen bonding between the anions in monolayers, located on the TiO2 surface, is discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
The η2‐thio‐indium complexes [In(η2‐thio)3] (thio = S2CNC5H10, 2 ; SNC4H4, (pyridine‐2‐thionate, pyS, 3 ) and [In(η2‐pyS)22‐acac)], 4 , (acac: acetylacetonate) are prepared by reacting the tris(η2‐acac)indium complex [In(η2‐acac)3], 1 with HS2CNC5H10, pySH, and pySH with ratios of 1:3, 1:3, and 1:2 in dichloromethane at room temperature, respectively. All of these complexes are identified by spectroscopic methods and complexes 2 and 3 are determined by single‐crystal X‐ray diffraction. Crystal data for 2 : space group, C2/c with a = 13.5489(8) Å, b = 12.1821(7) Å, c = 16.0893(10) Å, β = 101.654(1)°, V = 2600.9(3) Å3, and Z = 4. The structure was refined to R = 0.033 and Rw = 0.086; Crystal data for 3 : space group, P21 with a = 8.8064 (6) Å, b = 11.7047 (8) Å, c = 9.4046 (7) Å, β = 114.78 (1)°, V = 880.13(11) Å3, and Z = 2. The structure was refined to R = 0.030 and Rw = 0.061. The geometry around the metal atom of the two complexes is a trigonal prismatic coordination. The piperidinyldithiocarbamate and pyridine‐2‐thionate ligands, respectively, coordinate to the indium metal center through the two sulfur atoms and one sulfur and one nitrogen atoms, respectively. The short C‐N bond length in the range of 1.322(4)–1.381(6) Å in 2 and C‐S bond length in the range of 1.715(2)–1.753(6) Å in 2 and 3 , respectively, indicate considerable partial double bond character.  相似文献   

13.
The three title isomers, 4‐, (I), 3‐, (II), and 2‐fluoro‐N′‐(4‐pyridyl)benzamide, (III), all C12H9FN2O, crystallize in the P21/c space group (No. 14) with similar unit‐cell parameters and are isomorphous and isostructural at the primary hydrogen‐bonding level. An intramolecular C—H...O=C interaction is present in all three isomers [C...O = 2.8681 (17)–2.884 (2) Å and C—H...O117–118°], with an additional N—H...F [N...F = 2.7544 (15) Å] interaction in (III). Intermolecular amide–pyridine N—H...N hydrogen bonds link molecules into one‐dimensional zigzag chains [graph set C(6)] along the [010] direction as the primary hydrogen bond [N...N = 3.022 (2), 3.049 (2) and 3.0213 (17) Å]. These are augmented in (I) by C—H...π(arene) and cyclic C—F...π(arene) contacts about inversion centres, in (II) by C—F...F—C interactions [C...F = 3.037 (2) Å] and weaker C—H...π(arene)/C—H...F contacts, and in (III) by C—H...π(arene) and C=O...O=C interactions, linking the alternating chains into two‐dimensional sheets. Typical amide N—H...O=C hydrogen bonds [as C(4) chains] are not present [N...O = 3.438 (2) Å in (I), 3.562 (2) Å in (II) and 3.7854 (16) Å in (III)]; the C=O group is effectively shielded and only participates in weaker interactions/contacts. This series is unusual as the three isomers are isomorphous (having similar unit‐cell parameters, packing and alignment), but they differ in their interactions and contacts at the secondary level.  相似文献   

14.
4′‐Substituted derivatives of 2,2′:6′,2′′‐terpyridine with N‐containing heteroaromatic substituents, such as pyridyl groups, might be able to coordinate metal centres through the extra N‐donor atom, in addition to the chelating terpyridine N atoms. The incorporation of these peripheral N‐donor sites would also allow for the diversification of the types of noncovalent interactions present, such as hydrogen bonding and π–π stacking. The title compound, C24H16N4, consists of a 2,2′:6′,2′′‐terpyridine nucleus (tpy), with a pendant isoquinoline group (isq) bound at the central pyridine (py) ring. The tpy nucleus deviates slightly from planarity, with interplanar angles between the lateral and central py rings in the range 2.24 (7)–7.90 (7)°, while the isq group is rotated significantly [by 46.57 (6)°] out of this planar scheme, associated with a short Htpy…Hisq contact of 2.32 Å. There are no strong noncovalent interactions in the structure, the main ones being of the π–π and C—H…π types, giving rise to columnar arrays along [001], further linked by C—H…N hydrogen bonds into a three‐dimensional supramolecular structure. An Atoms In Molecules (AIM) analysis of the noncovalent interactions provided illuminating results, and while confirming the bonding character for all those interactions unquestionable from a geometrical point of view, it also provided answers for some cases where geometric parameters are not informative, in particular, the short Htpy…Hisq contact of 2.32 Å to which AIM ascribed an attractive character.  相似文献   

15.
The structures of four isomeric compounds, all C7H4ClNO4·C9H7N, of quinoline with chloro‐ and nitro‐substituted benzoic acid, namely, 2‐chloro‐5‐nitrobenzoic acid–quinoline (1/1), (I), 3‐chloro‐2‐nitrobenzoic acid–quinoline (1/1), (II), 4‐chloro‐2‐nitrobenzoic acid–quinoline (1/1), (III), and 5‐chloro‐2‐nitrobenzoic acid–quinoline (1/1), (IV), have been determined at 185 K. In each compound, a short hydrogen bond is observed between the pyridine N atom and a carboxyl O atom. The N...O distances are 2.6476 (13), 2.5610 (13), 2.5569 (12) and 2.5429 (12) Å for (I), (II), (III) and (IV), respectively. Although in (I) the H atom in the hydrogen bond is located at the O site, in (II), (III) and (IV) the H atom is disordered in the hydrogen bond over two positions with (N site):(O site) occupancies of 0.39 (3):0.61 (3), 0.47 (3):0.53 (3) and 0.65 (3):0.35 (3), respectively.  相似文献   

16.
Dioxobis(pyridine‐2‐thiolate‐N, S)molybdenum(VI) (MoO2(Py‐S)2), reacts with of 4‐methylpyridine (4‐MePy) in acetonitrile, by slow diffusion, to afford the title compound. This has been characterized by elemental analysis, IR and 1H NMR spectroscopy. The X‐ray single crystal structure of the complex is described. Structural studies reveal that the molecular structure consists of a β‐Mo8O26 polyanion with eight MoO6 distorted edge‐shared octahedra with short terminal Mo–O bonds (1.692–1.714 Å), bonds of intermediate length (1.887–1.999 Å) and long bonds (2.150–2.473 Å). Two different types of hydrogen bonds have been found: N–H···O (2.800–3.075 Å) and C–H···O (3.095–3.316 Å). The presence of π–π stacking interactions and strong hydrogen bonds are presumably responsible for the special disposition of the pyridinic rings around the polyanion cluster.  相似文献   

17.
The novel dinuclear Ni2+ complex [Ni2(μ‐Cl)(μ‐OAc) (EGTB)]·Cl·ClO4·2CH3OH, where EGTB is N, N, N′, N′‐tetrakis (2‐benzimidazolyl methyl‐1, 4‐di‐ethylene amino)glycol ether, crystallizes in the orthorhombic space group Pnma with a = 15.272(2), b = 14.768(2), c = 22.486(3) Å, V = 5071.4(12) Å3, Z = 4, Dcalc = 1.414 g cm?3, and is bridged by triply bridging agents of a chloride ion, an acetate and an intra‐ligand (‐OCH2CH2O‐) group. The nickel coordination geometry is that of a slightly distorted octahedron with a NiN3O2Cl arrangement of the ligand donor atoms. The Ni–Cl distance is 2.361(2) Å, and two Ni–O distances are 1.996(5) and 2.279(6) Å. The three Ni–N distances are 2.033(7), 2.060(6), and 2.166(6) Å with the Ni–N bond trans to an ether oxygen the shortest, the Ni–N bond trans to an acetate oxygen the middle and the Ni–N bond trans to Cl the longest.  相似文献   

18.
Copper-catalyzed azide-alkyne cycloaddition polymerization (CuAACP) of AB2 monomers demonstrated a chain-growth mechanism without any external ligand because of the complexation of in situ formed triazole groups with Cu catalysts. In this study, we explored the use of various ligands that affected the polymerization kinetics to tune the polymers’ molecular weights and the degree of branching (DB). Eight ligands were studied, including polyethylene glycol monomethyl ether (PEG350, Mn = 350), tris(benzyltriazolylmethyl)amine (TBTA), 2,6-bis(1-undecyl-1H-benzo[d]imidazol-2-yl)pyridine (Py(DBim)2), 2,2′-bipyridyl (bpy), 4,4′-di-n-nonyl-2,2′-bipyridine (dNbpy), N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA), N,N,N′,N″,N″-penta(n-butyl)diethylenetriamine (PBuDETA), and N,N,N′,N″,N″-pentabenzyldiethylenetriamine (PBnDETA). All ligands except PEG350 exhibited stronger coordination with Cu(I) than the polytriazole polymer, which freed the Cu catalyst from polymers and resulted in dominant step-growth polymerization with simultaneous chain-growth feature. Meanwhile, the use of PEG350 ligand retained the confined Cu in the polymer, demonstrating a chain-growth mechanism, but lower polymer molecular weights as compared with the no-external-ligand polymerization. Results indicated that aliphatic substituent groups on ligands had little effect on the molecular weights and DB of the polymers, but rigid aromatic substituent groups decreased both values. By varying the ligand species and amounts, hyperbranched polymers with DB value ranging from 0.53 ([TBTA]0/[Cu]0 = 5) to 0.98 ([PMDETA]0/[Cu]0 = 2) have been achieved. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2238–2244  相似文献   

19.
2‐Mercapto‐methyltetrazolate, Smetetraz, acts as monoanionic, monodentate ligand in a number of technetium compounds. Anionic TcV complexes of the types [TcO(Smetetraz)4] and [TcN(Smetetraz)4]2– are formed when (Bu4N)[TcVOCl4] or (Bu4N)[TcVINCl4], respectively, react with Na(Smetetraz). Reduction of the metal takes place in the latter case. (Bu4N)2[TcN(Smetetraz)4] crystallises in the monoclinic space group Pc (a = 9.701(5), b = 17.570(5), c = 16.821(10) Å, β = 96.50(3)°, Z = 2). The Tc atom is situated 0.580(3) Å above the basal plane of a square pyramid which is formed by the sulfur atoms and the nitrido ligand as its apex. The Tc–S bond lengths lie between 2.384(3) and 2.410(3) Å. [Tc(PPh3)(Smetetraz)3(CH3CN)] is formed during the reaction of [TcCl3(PPh3)2(CH3CN)] with NaSmetetraz as blue needles with co‐crystallised solvent toluene (space group C2/c, a = 24.188(4), b = 14.373(1), c = 25.617(5) Å, β = 109.48(1)°, Z = 8). The metal atom is coordinated by PPh3 and CH3CN in the axial position of a trigonal bipyramid. All three aryl rings are on the sterically less strained side of the plane defined by the sulfur atoms. The Tc–S bond lengths range between 2.233(2) and 2.247(2) Å.  相似文献   

20.
In the title compound, [CuCl2(C11H15N3O2)], the CuII ion is five‐coordinated in a strongly distorted trigonal–bipyramidal arrangement, with the two methyl­oxime N atoms located in the apical positions, and the pyridine N and the Cl atoms located in the basal plane. The two axial Cu—N distances are almost equal (mean 2.098 Å) and are substantially longer than the equatorial Cu—N bond [1.9757 (15) Å]. It is observed that the N(oxime)—M—N(pyridine) bond angle for five‐membered chelate rings of 2,6‐diacetyl­pyridine dioxime complexes is inversely related to the magnitude of the M—N(pyridine) bond. The structure is stabilized by intra‐ and inter­molecular C—H⋯Cl hydrogen bonds which involve the methyl H atoms, except for one of the two acetyl­methyl groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号