首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Free boundary problems are considered, where the tangential and normal components ut and un of an otherwise unknown plane harmonic vector field are prescribed along the unknown boundary curve as a function of the coordinates x, y and the tangent angle θ. The vector field is required to exist either in the interior region G+ or in the exterior G?. In each case the free boundary is characterized by a nonlinear integral equation. A linearised version of this equation is a one-dimensional singular integral equation. Under rather general hypotheses which are easy to check, the properties of the linear equation are described by Noether's theorems. The regularity of the solution is studied and the effect of the nonlinear terms is estimated. A variant of the Nash-Moser implicit-function theorem can be applied. This yields local existence and uniqueness theorems for the free boundary problem in Hölder-classes H2+μ. The boundary curve depends continuously on the defining data. Finally some examples are given, where the linearised equation can be completely discussed.  相似文献   

2.
We show existence and uniqueness for a linearized water wave problem in a two dimensional domain G with corner, formed by two semi-axes Γ1 and Γ2 which intersect under an angle α?∈?(0,?π]. The existence and uniqueness of the solution is proved by considering an auxiliary mixed problem with Dirichlet and Neumann boundary conditions. The latter guarantees the existence of the Dirichlet to Neumann map. The water wave boundary value problem is then shown to be equivalent to an equation like vtt ?+?gΛv?=?Pt with initial conditions, where t stands for time, g is the gravitational constant, P means pressure and Λ is the Dirichlet to Neumann map. We then prove that Λ is a positive self-adjoint operator.  相似文献   

3.
In this paper we prove the existence and uniqueness of solutions of the leakage problem for the Euler equations in bounded domain Ω C R3 with corners π/n, n = 2, 3… We consider the case where the tangent components of the vorticity vector are given on the part S1 of the boundary where the fluid enters the domain. We prove the existence of an unique solution in the Sobolev space Wpl(Ω), for arbitrary natural l and p > 1. The proof is divided on three parts: (1) the existence of solutions of the elliptic problem in the domain with corners where v – velocity vector, ω – vorticity vector and n is an unit outward vector normal to the boundary, (2) the existence of solutions of the following evolution problem for given velocity vector (3) the method of successive approximations, using solvability of problems (1) and (2).  相似文献   

4.
In this article, we consider the following problem. Given four distinct vertices v1,v2,v3,v4. How many edges guarantee the existence of seven connected disjoint subgraphs Xi for i = 1,…, 7 such that Xj contains vj for j = 1, 2, 3, 4 and for j = 1, 2, 3, 4, Xj has a neighbor to each Xk with k = 5, 6, 7. This is the so called “rooted K3, 4‐minor problem.” There are only few known results on rooted minor problems, for example, [15,6]. In this article, we prove that a 4‐connected graph with n vertices and at least 5n ? 14 edges has a rooted K3,4‐minor. In the proof we use a lemma on graphs with 9 vertices, proved by computer search. We also consider the similar problems concerning rooted K3,3‐minor problem, and rooted K3,2‐minor problem. More precisely, the first theorem says that if G is 3‐connected and e(G) ≥ 4|G| ? 9 then G has a rooted K3,3‐minor, and the second theorem says that if G is 2‐connected and e(G) ≥ 13/5|G| ? 17/5 then G has a rooted K3,2‐minor. In the second case, the extremal function for the number of edges is best possible. These results are then used in the proof of our forthcoming articles 7 , 8 . © 2007 Wiley Periodicals, Inc. J Graph Theory 55: 191–207, 2007  相似文献   

5.
Suppose we are given a group G\mit\Gamma and a tree X on which G\mit\Gamma acts. Let d be the distance in the tree. Then we are interested in the asymptotic behavior of the numbers ad: = # {w ? vertX : w=gv, g ? G , d(v0,w)=d }a_d:= \# \{w\in {\rm {vert}}X : w=\gamma {v}, \gamma \in {\mit\Gamma} , d({v}_0,w)=d \} if d? ¥d\rightarrow \infty , where v, vo are some fixed vertices in X.¶ In this paper we consider the case where G\mit\Gamma is a finitely generated group acting freely on a tree X. The growth function ?ad xd\textstyle\sum\limits a_d x^d is a rational function [3], which we describe explicitely. From this we get estimates for the radius of convergence of the series. For the cases where G\mit\Gamma is generated by one or two elements, we look a little bit closer at the denominator of this rational function. At the end we give one concrete example.  相似文献   

6.
We develop the shape derivative analysis of solutions to the problem of scattering of time-harmonic electromagnetic waves by a penetrable bounded obstacle. Since boundary integral equations are a classical tool to solve electromagnetic scattering problems, we study the shape differentiability properties of the standard electromagnetic boundary integral operators. The latter are typically bounded on the space of tangential vector fields of mixed regularity T H-\frac12(divG,G){\mathsf T \mathsf H^{-\frac{1}{2}}({\rm div}_{\Gamma},\Gamma)}. Using Helmholtz decomposition, we can base their analysis on the study of pseudo-differential integral operators in standard Sobolev spaces, but we then have to study the Gateaux differentiability of surface differential operators. We prove that the electromagnetic boundary integral operators are infinitely differentiable without loss of regularity. We also give a characterization of the first shape derivative of the solution of the dielectric scattering problem as a solution of a new electromagnetic scattering problem.  相似文献   

7.
Let ?? denote the family of simple undirected graphs on v vertices having e edges ((v, e)-graphs) and P(G; λ) be the chromatic polynomial of a graph G. For the given integers v, e, and λ, let f(v, e, λ) denote the greatest number of proper colorings in λ or less colors that a (v, e)-graph G can have, i.e., f(v, e, λ) = max{P(G; λ): G ∈ ??}. In this paper we determine some new upper bounds for f(v, e, λ).  相似文献   

8.
A vertex v of a graph G is called groupie if the average degree tv of all neighbors of v in G is not smaller than the average degree tG of G. Every graph contains a groupie vertex; the problem of whether or not every simple graph on ≧2 vertices has at least two groupie vertices turned out to be surprisingly difficult. We present various sufficient conditions for a simple graph to contain at least two groupie vertices. Further, we investigate the function f(n) = max minv (tv/tG), where the maximum ranges over all simple graphs on n vertices, and prove that f(n) = 1/42n + o(1). The corresponding result for multigraphs is in sharp contrast with the above. We also characterize trees in which the local average degree tv is constant.  相似文献   

9.
In a bounded domain with smooth boundary in ?3 we consider the stationary Maxwell equations for a function u with values in ?3 subject to a nonhomogeneous condition (u, v)x = u0 on the boundary, where v is a given vector field and u0 a function on the boundary. We specify this problem within the framework of the Riemann-Hilbert boundary value problems for the Moisil-Teodorescu system. This latter is proved to satisfy the Shapiro-Lopaniskij condition if an only if the vector v is at no point tangent to the boundary. The Riemann-Hilbert problem for the Moisil-Teodorescu system fails to possess an adjoint boundary value problem with respect to the Green formula, which satisfies the Shapiro-Lopatinskij condition. We develop the construction of Green formula to get a proper concept of adjoint boundary value problem.  相似文献   

10.
LetG o be a non compact real semisimple Lie group with finite center, and letU U(g) K denote the centralizer inU U(g) of a maximal compact subgroupK o ofG o. To study the algebraU U(g) K , B. Kostant suggested to consider the projection mapP:U U(g)→U(k)⊗U(a), associated to an Iwasawa decompositionG o=K o A o N o ofG o, adapted toK o. WhenP is restricted toU U(g) K J. Lepowsky showed thatP becomes an injective anti-homomorphism ofU U(g) K intoU(k) M U(a). HereU(k) M denotes the centralizer ofM o inU(k),M o being the centralizer ofA o inK o. To pursue this idea further it is necessary to have a good characterization of the image ofU U(g) K inU(k)M×U(a). In this paper we describe such image whenG o=SO(n,1)e or SU(n,1). This is acomplished by establishing a (minimal) set of equations satisfied by the elements in the image ofU U(g) K , and then proving that they are enough to characterize such image. These equations are derived on one hand from the intertwining relations among the principal series representations ofG o given by the Kunze-Stein interwining operators, and on the other hand from certain imbeddings among Verma modules. This approach should prove to be useful to attack the general case. Supported in part by Fundación Antorchas  相似文献   

11.
We study not necessarily associative (NNA) division algebras over the reals. We classify in this paper series those that admit a grading over a finite group G, and have a basis {v g |g ∈ G} as a real vector space, and the product of these basis elements respects the grading and includes a scalar structure constant with values only in {1, ? 1}. We classify here those graded by an abelian group G of order |G| ≤8 with G non–isomorphic to ?/8?. We will find the complex, quaternion, and octonion algebras, but also a remarkable set of novel non–associative division algebras.  相似文献   

12.
Using the integral equation method we study solutions of boundary value problems for the Stokes system in Sobolev space H 1(G) in a bounded Lipschitz domain G with connected boundary. A solution of the second problem with the boundary condition $\partial {\bf u}/\partial {\bf n} -p{\bf n}={\bf g}$ is studied both by the indirect and the direct boundary integral equation method. It is shown that we can obtain a solution of the corresponding integral equation using the successive approximation method. Nevertheless, the integral equation is not uniquely solvable. To overcome this problem we modify this integral equation. We obtain a uniquely solvable integral equation on the boundary of the domain. If the second problem for the Stokes system is solvable then the solution of the modified integral equation is a solution of the original integral equation. Moreover, the modified integral equation has a form f?+?S f?=?g, where S is a contractive operator. So, the modified integral equation can be solved by the successive approximation. Then we study the first problem for the Stokes system by the direct integral equation method. We obtain an integral equation with an unknown ${\bf g}=\partial {\bf u}/\partial {\bf n} -p{\bf n}$ . But this integral equation is not uniquely solvable. We construct another uniquely solvable integral equation such that the solution of the new eqution is a solution of the original integral equation provided the first problem has a solution. Moreover, the new integral equation has a form ${\bf g}+\tilde S{\bf g}={\bf f}$ , where $\tilde S$ is a contractive operator, and we can solve it by the successive approximation.  相似文献   

13.
Let F denote the family of simple undirected graphs on v vertices having e edges ((v, e)-graphs) and P(λ, G) be the chromatic polynomial of a graph G. For the given integers v, e, Δ, let f(v, e, Δ) denote the greatest number of proper colorings in Δ or less colors that a (v, e)-graph G can have, i.e., f(v, e, Δ) = max{P(Δ, G): G ∈ F}. In this paper we determine f(v, e, 2) and describe all graphs G for which P(2, G) = f(v, e, 2). For f(v, e, 3), a lower bound and an upper bound are found.  相似文献   

14.
In this paper we study the application of boundary integral equation methods for the solution of the third, or Robin, boundary value problem for the exterior Helmholtz equation. In contrast to earlier work, the boundary value problem is interpreted here in a weak sense which allows data to be specified in L (?D), ?D being the boundary of the exterior domain which we assume to be Lyapunov of index 1. For this exterior boundary value problem, we employ Green's theorem to derive a pair of boundary integral equations which have a unique simultaneous solution. We then show that this solution yields a solution of the original exterior boundary value problem.  相似文献   

15.
For a graph G, let t(G) denote the maximum number of vertices in an induced subgraph of Gthat is a tree. Further, for a vertex vV(G), let t(G, v) denote the maximum number of vertices in an induced subgraph of Gthat is a tree, with the extra condition that the tree must contain v. The minimum of t(G) (t(G, v), respectively) over all connected triangle‐free graphs G(and vertices vV(G)) on nvertices is denoted by t3(n) (t(n)). Clearly, t(G, v)?t(G) for all vV(G). In this note, we solve the extremal problem of maximizing |G| for given t(G, v), given that Gis connected and triangle‐free. We show that and determine the unique extremal graphs. Thus, we get as corollary that $t_3(n)\ge t_3^{\ast}(n) = \lceil {\frac{1}{2}}(1+{\sqrt{8n-7}})\rceilFor a graph G, let t(G) denote the maximum number of vertices in an induced subgraph of Gthat is a tree. Further, for a vertex vV(G), let t(G, v) denote the maximum number of vertices in an induced subgraph of Gthat is a tree, with the extra condition that the tree must contain v. The minimum of t(G) (t(G, v), respectively) over all connected triangle‐free graphs G(and vertices vV(G)) on nvertices is denoted by t3(n) (t(n)). Clearly, t(G, v)?t(G) for all vV(G). In this note, we solve the extremal problem of maximizing |G| for given t(G, v), given that Gis connected and triangle‐free. We show that and determine the unique extremal graphs. Thus, we get as corollary that $t_3(n)\ge t_3^{\ast}(n) = \lceil {\frac{1}{2}}(1+{\sqrt{8n-7}})\rceil$, improving a recent result by Fox, Loh and Sudakov. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 206–209, 2010  相似文献   

16.
We show that a left-invariant metric g on a nilpotent Lie group N is a soliton metric if and only if a matrix U and vector v associated the manifold (N, g) satisfy the matrix equation U v = [1], where [1] is a vector with every entry a one. We associate a generalized Cartan matrix to the matrix U and use the theory of Kac–Moody algebras to analyze the solution spaces for such linear systems. An application to the existence of soliton metrics on certain filiform Lie groups is given.  相似文献   

17.
The following definition is motivated by the study of circle orders and their connections to graphs. A graphs G is called a point-halfspace graph (in R k) provided one can assign to each vertex v ? (G) a point p v R k and to each edge e ? E(G) a closed halfspace He ? R k so that v is incident with e if and only if p v ? He. Let H k denote the set of point-halfspace graphs (in R k). We give complete forbidden subgraph and structural characterizations of the classes H k for every k. Surprisingly, these classes are closed under taking minors and we give forbidden minor characterizations as well. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
A geodesic in a graph G is a shortest path between two vertices of G. For a specific function e(n) of n, we define an almost geodesic cycle C in G to be a cycle in which for every two vertices u and v in C, the distance dG(u, v) is at least dC(u, v)?e(n). Let ω(n) be any function tending to infinity with n. We consider a random d‐regular graph on n vertices. We show that almost all pairs of vertices belong to an almost geodesic cycle C with e(n) = logd?1logd?1n+ ω(n) and |C| = 2logd?1n+ O(ω(n)). Along the way, we obtain results on near‐geodesic paths. We also give the limiting distribution of the number of geodesics between two random vertices in this random graph. Copyright © 2010 John Wiley & Sons, Ltd. J Graph Theory 66:115‐136, 2011  相似文献   

19.
Let G=(V,E) be a undirected k-edge connected graph with weights ce on edges and wv on nodes. The minimum 2-edge connected subgraph problem, 2ECSP for short, is to find a 2-edge connected subgraph of G, of minimum total weight. The 2ECSP generalizes the well-known Steiner 2-edge connected subgraph problem. In this paper we study the convex hull of the incidence vectors corresponding to feasible solutions of 2ECSP. First, a natural integer programming formulation is given and it is shown that its linear relaxation is not sufficient to describe the polytope associated with 2ECSP even when G is series-parallel. Then, we introduce two families of new valid inequalities and we give sufficient conditions for them to be facet-defining. Later, we concentrate on the separation problem. We find polynomial time algorithms to solve the separation of important subclasses of the introduced inequalities, concluding that the separation of the new inequalities, when G is series-parallel, is polynomially solvable.  相似文献   

20.
A total coloring of a graph G is a coloring of all elements of G, i.e., vertices and edges, in such a way that no two adjacent or incident elements receive the same color. Let L(x) be a set of colors assigned to each element x of G. Then a list total coloring of G is a total coloring such that each element x receives a color contained in L(x). The list total coloring problem asks whether G has a list total coloring. In this paper, we first show that the list total coloring problem is NP-complete even for series-parallel graphs. We then give a sufficient condition for a series-parallel graph to have a list total coloring, that is, we prove a theorem that any series-parallel graph G has a list total coloring if |L(v)|min{5,Δ+1} for each vertex v and |L(e)|max{5,d(v)+1,d(w)+1} for each edge e=vw, where Δ is the maximum degree of G and d(v) and d(w) are the degrees of the ends v and w of e, respectively. The theorem implies that any series-parallel graph G has a total coloring with Δ+1 colors if Δ4. We finally present a linear-time algorithm to find a list total coloring of a given series-parallel graph G if G satisfies the sufficient condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号