首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic Oligomers of (R)-3-Hydroxybutanoic Acid: Preparation and Structural Aspects The oligolides containing three to ten (R)-3-hydroxybutanoate (3-HB) units (12-through 40-membered rings 1–8 ) are prepared from the hydroxy acid itself, its methyl ester, its lactone (‘monolide’), or its polymer (poly(3-HB), mol. wt. ca. 106 Dalton) under three sets of conditions: (i) treatment of 3-HB ( 10 ) with 2,6-dichlorobenzoyl chloride/pyridine and macrolactonization under high dilution in toluene with 4-(dimethylamino)pyridine (Fig. 3); (ii) heating a solution (benzene, xylene) of the β-lactone 12 or of the methyl ester 13 from 3-HB with the tetraoxadistanna compound 11 as trans-esterification catalyst (Fig. 4); (iii) heating a mixture of poly(3-HB) and toluene-sulfonic acid in toluene/1,2-dichloroethane for prolonged periods of time at ca. 100° (Fig. 6). In all three cases, mixtures of oligolides are formed with the triolide 1 being the prevailing component (up to 50% yield) at higher temperatures and with longer reaction times (thermodynamic control, Figs. 3–6). Starting from rac-β-lactone rac- 12 , a separable 3:1 to 3:2 mixture of the l,u- and the l,l-triolide diasteroisomers rac- 14 and rac- 1 , respectively, is obtained. An alternative method for the synthesis of the octolide 6 is also described: starting from the appropriate esters 15 and 17 and the benzyl ether 16 of 3-HB, linear dimer, tetramer, and octamer derivatives 18–23 are prepared, and the octamer 23 with free OH and CO2H group is cyclized (→ 6 ) under typical macrolactonization conditions (see Scheme). This ‘exponential fragment coupling protocol’ can be used to make higher linear oligomers as well. The oligolides 1–8 are isolated in pure form by vacuum distillation, chromatography, and crystallization, an important analytical tool for determining the composition of mixtures being 13C-NMR spectroscopy (each oligolide has a unique and characteristic chemical shift of the carbonyl C-atom, with the triolide 1 at lowest, the decolide 8 at highest field). The previously published X-ray crystal structures of triolide 1 , pentolide 3 , and hexolide 4 (two forms), as well as those of the l,u-triolide rac- 14 , of tetrolide ent- 2 , of heptolide 5 , and of two modifications of octolide 6 described herein for the first time are compared with each other (Figs. 7–10 and 12–15, Tables 2 and 5–7) and with recently modelled structures (Tables 3 and 4, Fig. 11). The preferred dihedral angles τ1 to τ4 found along the backbone of the nine oligolide structures (the hexamer and the larger ones all have folded rings!) are mapped and statistically evaluated (Fig. 16, Tables 5–7). Due to the occurrence of two conformational minima of the dihedral angle O? CO? CH2? CH (τ3 = + 151 or ?43°), it is possible to locate two types of building blocks for helices in the structures at hand: a right-handed 31 and a left-handed 21 helix; both have a ca. 6 Å pitch, but very different shapes and dispositions of the carbonyl groups (Fig. 17). The 21 helix thus constructed from the oligolide single-crystal data is essentially superimposable with the helix derived for the crystalline domains of poly(3-HB) from stretched-fiber X-ray diffraction studies. The absence of the unfavorable (E)-type arrangements around the OC? OR bond (‘cis-ester’) from all the structures of (3-HB) oligomers known so far suggests that the model proposed for a poly(3-HB)-containing ion channel (Fig. 2) must be modified.  相似文献   

2.
3.
4.
5.
We have isolated from the carpophores of Boletus satanas Lenz (Basidiomycetae) (2S,4S)-(+)-γ-hydroxynorvaline ( 1 ) and (2S,4R)-(?)-γ-hydroxynorvaline ( 2 ). The chirality of each diastereomer has been determined by chemical synthesis starting from optically active precursors and by application of different chiroptical methods. Gaschromatographic separation of the derived diastereomeric N-[(S)-α-methoxypropionyl]-lactones reveals that the optical purity of natural 2 is 88% whereas 1 exists as a partial racemate: (2S,4S): (2R,4R) = 3:2. Muscarine could not be detected in the carpophores of B. satanas, contrary to some literature data but basic substances of unknown structure are present in low concentration.  相似文献   

6.
7.
Degradation of palustrin to (?)-dihydropalustramic acid ((2R,6S,1′S)-[6-(1′-hydroxypropyl)-2-piperidyl]acetic acid), and the structure of palustrin and palustridin The structure of the macrocyclic alkaloid palustrin is shown to be 1a . Its piperidine unit can be obtained as (?)-dihydropalustramic acid ( 6a ) by the following sequence of degradation reactions (Scheme 1): catalytic hydrogenation of 1a followed by methylation and Hofmann degradation provides the allyl base 4 . the regioselectivity of the Hofmann elimination is explained by intramolecular proton abstraction at C(3) by C(18)-O?. Catalytic reduction of 4 and subsequent acidic hydrolysis yielded 6a and N, N-dimethylputrescine (?N,N-dimethyl-1,4-butanediamine; 7 ). Loss of the N-alkyl group in the formation of 6a occurs during the catalytic hydrogenation step. This interpretation is supported by the results of model experiments. The position of the double bond in 1a is deduced from the IR. spectrum of the bromo-δ-lactone 19 prepared by treatment of 1a with N-bromosuccinimide at pH 4 (Scheme 3). Some of our previously published results on the degradation of dihydropalustrin ( 2a ) are obviously at variance with the newly proposed structure for palustrin ( 1a ). They can easily be explained by assuming a partial hydrogenolysis of the C(17)-N(1) bond during the preparation of dihydropalustrin from palustrin. Periodate cleavage of dihydropalustramic acid methyl ester ( 6b ) liberates propionaldehyde, which can be trapped by working at pH 7.5 (Scheme 2); at lower pH values it condenses rapidly with the simultaneously generated 3,4,5,6-tetrahydropyridine derivative 15 . The structure of the condensation product is proposed to be 16 on the basis of the isolation of its hydrogenation product, an isomeric dihydropalustramic acid ( 17 ).  相似文献   

8.
9.
From the bulbs of Eucomis punctata L'Hérit. (Liliaceae) and of a hitherto undefined species of Eucomis a new optically active phenolic carboxylic acid, eucomic acid, was isolated. Structure 1 was assigned on the basis of chemical and spectral evidence. The absolute configuration of eucomic acid was determined by its correlation with piscidic acid ((2 R, 3 S)-2-(4′-hydroxybenzyl)-tartaric acid) ( 8 ). Consequently, eucomic acid is (R)-(?)-2-(4′-hydroxybenzyl)-malic acid ( 1 ). For the stereospecific synthesis, methyl cis-p-methoxybenzylidene-succinic acid ( 22 ) was transformed into the γ-lactone 24 which, by catalytic hydrogenolysis, yielded (±)-2-(4′-hydroxybenzyl)-malic acid 1-methyl ester ( 27 ). Resolution with (?)-quinine led to the enantiomeric acids 29 and 30 . The methyl ester of the levorotatory enantiomer 30 was identical with the dimethyl ester 3 of 4′-O-methyl-eucomic acid.  相似文献   

10.
Novel Synthesis of (?)-(R)-Cembrene A, Synthesis of (+)-(R)-Cembrenene and (+)-(S)-Cembrene A novel synthesis of (?)-(R)-cembrene A ((?)- 3 ) was developed using the Sharpless epoxidation for the introduction of the chiral center. Furthermore, the synthesis of (+)-(R)-cembrenene ((+)- 4 ) showed that this cembranoid must have the (R)-configuration and not, as previously reported, the (S)-configuration. Selective hydrogenation of (+)- 4 afforded (+)-(S)-cenibrene ((+)- 5 ).  相似文献   

11.
12.
Monodisperse Linear and Cyclic Oligo[(R)-3-hydroxybutanoates] Containing up to 128 Monomeric Units Using benzyl ester/(tert-butyl)diphenylsilyl ether protection, (COCl)2/pyridine esterification conditions, and a fragment-coupling strategy (with H2/Pd-C debenzylation and HF · pyridine desilylation), linear oligomers of (R)-3-hydroxybutanoic acid (3-HB) containing up to 128 3-HB building blocks (mol. weight > 11 000 Da) are assembled (Schemes 1,2,5, and 6). In contrast to the previously employed protecting-group combination, and due to the low-temperature esterifying conditions, this procedure leads to monodisperse oligomers: all steps occur without loss of single 3-HB units. The product oligomers with two, one, and no terminal protecting groups (mostly prepared in multi-gram amounts) are characterized by all standard spectroscopic methods, especially by mass spectroscopy (Figs. 2 and 3), by their optical activity, and by elemental analyses. Cyclization of the oligo[(R)-3-hydroxybutanoic acids] with up to 32 3-HB units, using thiopyridine activation and CuBr2 for the ring closure, produces oligolides consisting of up to 128 ring atoms (Scheme 7). Mixed oligolides containing 3-HB and (R)-3-hydroxypentanoic units are prepared from the corresponding linear trimers, using Yamaguchi's method for the ring closure (Scheme 8 and Fig.4 (X-ray crystal structures of two folded conformers)). Comparisons of melting points (Table 1), of [α] values (Tables 2 and 3), of 1H-NMR coupling constants (Table 3), and of molecular volume/hydroxyalkanoate unit (Table 4) of linear and cyclic oligomer derivatives and of the high-molecular-weigh polymer show that the monodisperse oligomers appear to be surprisingly good models for the polymer. Besides this insight, our synthesis is supplying the samples to further test the role of P(3-HB) (ca. 140 units) as a component of complexes forming channels through cell-wall phospholipid bilayers.  相似文献   

13.
Synthesis and Determination of the Chirality Sense of (+)-(R)-1-Azabicyclo[3.3.1]nonan-2-one Optically active (+)-(R)-1-azabicyclo[3.3.1]nonan-2-one ((+)- 1 ) of known absolute configuration is synthesized in the following way: Resolution of (±)-piperidin-3-ethanol ((±)- 2 ) by fractional recrystallization of its diastereoisomeric salts with (+)-3-bromocamphor-8-sulfonic acid from EtOH gave a less soluble salt that yielded(+)- 2 . The chirality sense of (+)- 2 was shown to be (R) by chemical correlation with the enantiomers of 3-oxocyclopentaneacetic acid ((±)- 8 ) of known absolute configuration. This correlation was effected by a Beckmann rearrangement of the oxime (R)-9 to the pyridone (S)- 10 followed by a direct reduction with LiAlH4 to give the enantiomer (?)-(S)- 2 that was characterized as its benzyloxycarbonyl derivative (?)-(S)- 3 . The alcohol (+)-3 was converted via (+)- 4 into the nitrile (+)-5 which gave by hydrogenolysis and hydrolysis the (R)-configurated hydrochloride (+)- 6 which was cyclized to the bicyclic (5R)-lactam (+)- 1 in 67% yield by heating with 2 equiv. of dibutyltin(IV) oxide in toluene. The nonplanar amide function in (+)- 1 with the substituents at the N-atomarranged in a trigonal pyramid causes two rather intense Cotton effects at 242 (Δ?max = +19.5) and 211 nm(Δ?max = ?17.9) in the CD spectrum. If the molecules of (+)- 1 do exist mainly in the chair-twistboat conformation, the amide chromophore is pyramidally deformed in a sense defined by the absolute configuration at C(5). Therefore, the CD spectrum of the (5R)-lactam (+)- 1 can be used to test theories describing the chiroptical properties of distorted amides.  相似文献   

14.
The first total enantioselective synthesis of (+)-(4S, 8R)-8-epi-β-bisabolol(+)- 1 and of (?)-(4R, 8 S )-4-epi-β-bisabolol ((?))? 1 ) is reported. The key step in the synthesis is the kinetic resolution of (±)? 5 by means of the Sharpless epoxidation yielding (?)- and (+}? 6 , respectively. Reduction of the epoxides with LiAlH4 gave the diols (+)-and(?)? 7 which were transformed into (+)- and (?)? 8 , respectively, via the corresponding mesylate. Reaction of these epoxides with the Grignard reagent derived from homoprenylbromide, assisted by Li2CuCl4, finished the synthesis of the target compounds 1 with high diastereo- and enantioselectivity.  相似文献   

15.
16.
17.
18.
The temperature dependent CD. spectra of (3S, 3′R)- and (3S, 3′S)-adonixanthin are compared with those of (3R, 3′R)-zeaxanthin ( 1 ) and (3S, 3′S)-astaxanthin ( 2 ). The room temperature spectra of 1 and 2 are quite similar. On cooling to ?180° the CD. of 1 simply intensifies, the CD. of 2 changes sign and becomes also very intense. The room-temperature CD. of (3S, 3′R)-adonixanthin ( 3 ) resembles closely those of 1 and 2 at room temperature. On cooling, however, it becomes weak and changes strongly its shape. With (3S, 3′S)-adonixanthin ( 4 ) it is the low-temperature spectrum which resembles that of 2 at low temperature, whereas the room-temperature spectrum is weak and quite different in shape. These observations can be explained with temperature dependent equilibria where the end groups are twisted out of the plain of the chain thereby conferring chirality to the conjugated system.  相似文献   

19.
Stereochemical Correlations between (2R,4′R,8′R)-α-Tocopherol, (25S,26)-Dihydroxycholecalciferol, (–)-(1S,5R)-Frontalin and (–)-(R)-Linalol The optically active C5- and C4-building units 1 and 2 with their hydroxy group at a asymmetric C-atom were transformed to (–)-(1S,5R)-Frontalin ( 7 ) and (–)-(3R)-Linalol ( 8 ) respectively; 1 and 2 had been used earlier in the preparation of the chroman part of (2R,4′R,8′R)-α-Tocopherol ( 6a , vitamin E), and for introduction of the side chain in (25S,26)-Dihydroxycholecalciferol ((25S)- 4 ), a natural metabolite of Vitamin D3. The stereochemical correlations resulting from these converions fit into a coherent picture with those correlations already known from literature and they confirm our earlier stereochemical assignments. A stereochemical assignment concerning the C(25)-epimers of 25,26-Dihydroxycholecalciferol that was in contrast to our findings and that initiated the conversion of 1 and 2 to 7 resp. 8 for additional stereochemical correlations has been corrected in the meantime by the authors [26].  相似文献   

20.
Synthesis of (?)-(R)-Nephthenol and (?)-(R)-Cembren A Starting for L -serine,(?)-(R)-nephthenol((?)- 2 ) and (?)-(R)-cembren A((?)- 3 ) were synthesized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号