首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
The dinucleoside phosphate ΠdpΠd ( 4 ) was synthesized from the monomers 1-(5′-O-monomethoxytrityl - 2′ - deoxy - β - D - ribofuranosyl) - 2 (1 H) - pyridone ((MeOTr) Πd, 2 ) and 1-(5′-O-phosphoryl-3′-O-acetyl-2′-deoxy-β-D -ribofuranosyl)-(1H)-pyridone (pΠd(Ac), 3 ). Its 6.4% hyperchromicity and an analysis of the 1H-NMR. spectra indicate that the conformation and the base-base interactions in 4 are similar to those in natural pyrimidine dinucleoside phosphates.  相似文献   

2.
Syntheses for 9-β-D-ribofuranosyluric acid (16) and its 5′-monophosphate 14 starting from guanosine and by applying the p-nitrophenylethyl blocking group are described.  相似文献   

3.
Via the phosphotriester approach, new structural analogs of (2′–5′)oligoadenyiates, namely 3′-deoxyadenylyl-(2′–5′)-3′-dcoxyadenylyl-(2′–ω)-9-(ω-hydroxyalkyl)adenines 18 – 21 , have been synthesized (see Scheme) which should preserve biological activity and show higher stability towards phosphodiesterases. The newly synthesized oligonucleotides 18 – 21 have been characterized by 1H-NMR spectra, TLC, and HPLC analysis.  相似文献   

4.
5.
A useful, facile procedure for preparing seleno-heterocyclic compounds is reported. Treatment of cAMP, AMP, adenosine, 2-aminoadenosine, adenine arabinoside and formycin with hydrogen selenide in aqueous pyridine at 65° for 1.5-5 days gave the corresponding seleno compounds in good yield, while these compounds were relatively inert to hydrogen sulfide. A reaction mechanism is proposed.  相似文献   

6.
The chemical syntheses of the phosphorothioate of (2′–5′)adenylate dimer (see 6a , 6b ) and trimer (see 11a , 11b , 12a , 12b ) as well as of their 5′-monophosphates (see 15a , 15b , 16a , 16b ) using the phosphoramidite method are described. The resulting diastereoisomer mixtures were separated into the pure components by chromatographical means. All synthetic intermediates were characterized by TLC, elemental analysis, and UV and 1H-NMR spectra.  相似文献   

7.
1-(2′-Deoxy-5′-O-dimethoxytrityl-′-D -ribofuranosyl)-1 H-benzimidazole 3′-[(p-chlorophenyl)(2-cyanoethyl) phosphate] ( 6 ) has been synthesized from 1-(β-D -ribofuranosyl)-1H-benzimidazole ( 3b ) using regiospecific 2′-deoxygenation. The latter compound was obtained by glycosylation of benzimidazole with the D -ribose derivative 2 leading exclusively of the β-D -anomer.  相似文献   

8.
The chemical synthesis of 3′-deoxyadenyly-(2′-5′)-3′-deoxyadenylyl-(2′-5′)-3′-deoxyadenosine ( 30 ; trimeric cordycepin) is described by three different routes using various protecting groups and applying the phosphotriester approach. The intermediates have been isolated and characterized by elemental analyses and spectroscopic means. High yields of 30 have been obtained on deprotection making this biologically very active compound available in preparative scale.  相似文献   

9.
Nucleosides and Nucleotides. Part 16. The Behaviour of 1-(2′-Deoxy-β-D -ribofuranosyl)-2(1H)-pyrimidinone-5′-triphosphate, 1-(2′-Deoxy-β-D -ribofuranosyl-2(1H))-pyridinone-5′-triphosphate and 4-Amino-1-(2′-desoxy-β-D -ribofuranosyl)-2(1H)-pyridinone-5′-triphosphate towards DNA Polymerase The behaviour of nucleotide base analogs in the DNA synthesis in vitro was studied. The investigated nucleoside-5′-triphosphates 1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyrimidinone-5′-triphosphate (pppMd), 1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyridinone-5′-triphosphate (pppIId) and 4-amino-1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyridinone-5′-triphosphate (pppZd) can be considered to be analogs of 2′-deoxy-cytidine-5′-triphosphate. However, their ability to undergo base pairing to the complementary guanine is decreased. When pppMd, pppIId or pppZd are substituted for pppCd in the enzymatic synthesis of DNA by DNA polymerase no incorporation of these analogs is observed. They exhibit only a weak inhibition of the DNA synthesis. The mode of the inhibition is uncompetitive which shows that these nucleotide analogs cannot serve as substrates for the DNA polymerase.  相似文献   

10.
An efficient strategy for the synthesis of (2′-5′)adenylate trimer conjugates with 2′-terminal 3′-O-(ω-hydroxyalkyl) and 3′-O-(ω-carboxyalkyl) spacers is reported. Npeoc-protected adenosine building blocks 37--40 for phosphoramidite chemistry carrying a 3′-O-[11-(levulinoyloxy)undecyl], 3′-O-{2-[2-(levulinoyloxy)ethoxy]ethyl}, 3′-O-[5-(2-cyanoethoxycarbonyl)pentyl], and 3′-O-{5-[(9H-fluoren-9-ylmethoxy)carbonyl]pentyl} moiety, respectively, were prepared (npeoc = 2-(4-nitrophenyl)ethoxycarbonyl). Condensation with the cordycepin (3′-deoxyadenosine) dimer 1 led to the corresponding trimers 42, 43, 47 , and 48. Whereas the levulinoyl (lev) and 9H-fluoren-9-ylmethyl (fm) blocking groups could be cleaved off selectively from the trimers 42, 43 , and 48 yielding the intermediates 44, 45 , and 49 for the synthesis of the 3′-O-(ω-hydroxyalkyl)trimers 53, 54 and the cholesterol conjugates 59--61 , the 2-cyanoethyl (ce) protecting group of 47 , however, could not be removed in a similar manner from the carboxy function. Trimer 47 served as precursor for the preparation of the trimer 55 with a terminal 3′-O-(5-carboxypentyl)adenosine moiety. The metabolically stable 3′-O-alkyl-(2′--5′)A derivatives were tested regarding inhibition of HIV-1 syncytia formation and HIV-1 RT activity. Only the conjugate 59 showed significant effects, whereas the trimers 53--55 and the conjugates 60 and 61 were less potent inhibitors, even at 100-fold larger concentrations.  相似文献   

11.
Various condensed areno[g]lumazine derivatives 2 , 3 , and 5 – 7 were synthesized as new fluorescent aglycones for glycosylation reactions with 2-deoxy-3, 5-di-O-(p-toluoyl)-α/β-D -erythro-pentofuranosyl chloride ( 10 ) to form, in a Hilbert-Johnson-Birkofer reaction, the corresponding N1-(2′-deoxyribonucleosides) 15 – 21 . The β-D -anomers 15 , 17 , 19 , and 21 were deblocked to 24 – 27 and, together with N1-(2′-deoxy-β-D -ribofuranosyl)lumazine ( 22 ) and its 6, 7-diphenyl derivative 23 , dimethoxytritylated in 5′-position to 28–33. These intermediates were then converted into the 3′-(2-cyanoethyI diisopropylphosphoramidites) 34 – 39 which function as monomeric building block in oligonucleotide syntheses as well as into the 3′-(hydrogen succinates) 40 – 45 which can be used for coupling with the solid-support material. A series of lumazine-modified oligonucleotides were synthesized and the influence of the new nucleobases on the stability of duplex formation studied by measuring the Tm values in comparison to model sequences. A substantial increase in the Tm is observed on introduction of areno[g]lumazine moieties in the oligonucleotide chain stabilizing obviously the helical structures by improved stacking effects. Stabilization is strongly dependent on the site of the modified nucleobase in the chain.  相似文献   

12.
Nucleosides and Nucleotides. Part 10. Synthesis of Thymidylyl-(3′-5′)-thymidylyl-(3′-5′)-1-(2′-deoxy-β-D - ribofuranosyl)-2(1 H)-pyridone The synthesis of 5′-O-monomethoxytritylthymidylyl-(3′-5′)-thymidylyl-(3′-5′)-1-(2′-deoxy-β-D -ribofuranosyl)-2(1H)-pyridone ((MeOTr)TdpTdp∏d, 5 ) and of thymidylyl-(3′-5′)-thymidylyl-(3′-5′)-1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyridone (TdpTdp∏d, 11 ) by condensing (MeOTr) TdpTd ( 3 ) and p∏d(Ac) ( 4 ) in the presence of DCC in abs. pyridine is described. Condensation of (MeOTr) TdpTdp ( 6 ) with Πd(Ac) ( 7 ) did not yield the desired product 5 because compound 6 formed the 3′-pyrophosphate. The removal of the acetyl- and p-methoxytrityl protecting group was effected by treatment with conc. ammonia solution at room temperature, and acetic acid/pyridine 7 : 3 at 100°, respectively. Enzymatic degradation of the trinucleoside diphosphate 11 with phosphodiesterase I and II yielded Td, pTd and p∏d, Tdp and Πd, respectively, in correct ratios.  相似文献   

13.
The 5′-amino-5′-deoxy-2′,3′-O-isopropylideneadenosine ( 4 ) was obtained in pure form from 2′,3′-O-isopropylideneadenosine ( 1 ), without isolation of intermediates 2 and 3 . The 2-(4-nitrophenyl)ethoxycarbonyl group was used for protection of the NH2 functions of 4 (→7) . The selective introduction of the palmitoyl (= hexadecanoyl) group into the 5′-N-position of 4 was achieved by its treatment with palmitoyl chloride in MeCN in the presence of Et3N (→ 5 ). The 3′-O-silyl derivatives 11 and 14 were isolated by column chromatography after treatment of the 2′,3′-O-deprotected compounds 8 and 9 , respectively, with (tert-butyl)dimethylsilyl chloride and 1H-imidazole in pyridine. The corresponding phosphoramidites 16 and 17 were synthesized from nucleosides 11 and 14 , respectively, and (cyanoethoxy)bis(diisopropylamino)phosphane in CH2Cl2. The trimeric (2′–5′)-linked adenylates 25 and 26 having the 5′-amino-5′-deoxyadenosine and 5′-deoxy-5′-(palmitoylamino)adenosine residue, respectively, at the 5′-end were prepared by the phosphoramidite method. Similarly, the corresponding 5′-amino derivatives 27 and 28 carrying the 9-[(2-hydroxyethoxy)methyl]adenine residue at the 2′-terminus, were obtained. The newly synthesized compounds were characterized by physical means. The synthesized trimers 25–28 were 3-, 15-, 25-, and 34-fold, respectively, more stable towards phosphodiesterase from Crotalus durissus than the trimer (2′–5′)ApApA.  相似文献   

14.
A series of new 2′–5′ oligonucleotides carrying the 9-(3′-azido-3′deoxy-β-D-xylofuranosyl)adenine moiety as a building block has been synthesized via the phosphotriester method. The use of the 2-(4-nitrophenyl)ethyl (npe) and 2-(4-nitrophenyl)ethoxycarbonyl (npeoc) blocking groups for phosphate, amino, and hydroxy protection guaranteed straightforward syntheses in high yields and easy deblocking lo form the 2′–5′ trimers 21 , 22 , and 25 and the tetramer 23 . Catalytic reduction of the azido groups in [9-(3′-azido-3′-deoxy-β-D-xylofuranosyl)adenine]2′-yl-[2′-(Op-ammonio)→ 5′]-[9-(3′-azido-3′-deoxy-β-D-xylofuranosyl)adenin]-2′-yl-[2′-(Op-ammonio)→ 5′]-9-(3′-azido-3′-deoxy-β-D-xylofuranosyl)adenine ( 21 ) led to the corresponding 9-(3′-amino-3′-deoxy-β-D-xylofuranosyl)-adenine 2′–5′ trimer 26 in which the two internucleotidic linkages are formally neutralized by intramolecular betaine formation.  相似文献   

15.
The four protected diastereoisomcrs 7a / 7b and 8a / 8b P-thioadenylyl-(3′–5′)-P-thioadenylyI-(3′–5′)-adenosine were synthesized, separated, and deblocked to the free oligonucleotides (Scheme). Biochemical characterization of these (3′–5′)phosphorothioate analogues of adenyiate trimer indicate that these compounds, and the corresponding 5′-monophosphates, neither bind to nor activate RNase L, and are considered to be valuable control compounds in screening experiments.  相似文献   

16.
A series of new 2′–5′-oligonucleotide trimers carrying a 9-(2′,3′-anhydro-β-D -ribofuranosyl)-( 59 ), 9-(3′-deoxy-β-D -glycero-pent-3-enofuranosyl)-( 63 ), 9-(3′-azido-3′-deoxy-β-D -xylofuranosyl)-( 62 ), and 9-(3′-halo-3′-deoxy-β-D -xylofuranosyl)adenine ( 60 and 61 ) moiety at the 2′-terminal end have been synthesized via the phosphotriester method. The properly protected, modified monomeric building blocks ( 6 , 9 , 16 , 19 , 27 , 33 , 36 , 37 , and 43 ) were obtained, in general, by a sequence of reactions, introducing the protecting groups into the right positions. Their condensations with the intermediary dimeric 2′-terminal phosphodiesters 48 and 49 led to the fully protected 2′–5′-trimers 50–58 which were deblocked to form the free 2′–5′-trimers 59 – 63 . Easy elimination of HBr on deprotection did not allow to form the trimeric (3′-bromo-3′-deoxy-β-D -xylofuranosyl)adenine analogue but only 63 carrying an unsaturated sugar moiety instead. The newly synthesized compounds have been characterized by UV and NMR spectra as well as by elemental analysis.  相似文献   

17.
The chemical synthesis of adenylyl-(2′–5′)-adenylyl-(2′–5′)-8-azidoadenosine ( 15 ) was performed by the phosphotriester approach. Enzymatic phosphorylation of 15 by [γ-32P]ATP led to the corresponding labelled 5′-monophosphate 16 . Photoinsertion of 16 took place on UV irradiation by covalent cross linking to a protein of Mr 80 K known to be RNase L. Radiobinding and core-cellulose assays as well as photoaffinity labelling experiments with 16 are described.  相似文献   

18.
The novel uncharged analog 2 of adenosine 3′,5′ -monophosphate (1) was prepared in its racemic form. To increase membrane permeability, the phosphate diester monoanion group of 1 was replaced by a dimethylene sulfone unit ( = methanosulfonylmethano group), and the 2′-OH group was removed. To decrease lability against acid-catalyzed depurination, the ring O-atom was replaced by a CH2 group. All three modifications are also expected to increase the stability of analog 2 towards enzymatic degradation. The carbocyclic skeleton of 2 was constructed from trinorbornenecarbaldehyde 3 (see Scheme 1–3), and the adenine precursor 6-chloropurine was introduced in the carbocyclic unit via an SN2 reaction based on Mitsunobu chemistry (Schemes 4 and 5).  相似文献   

19.
A capillary zone clectrophoresis method was developed for the determination of IMP and GIMP, commonly used as flavor enhancers in poultry feed, in a real sample of complex composition. A baseline separation of inosine 5′-monophosphate and guanosine 5′-monophosphate was achieved within 10 min and the other components in the sample did not interfere with the separation. Quantitative results obtained from pig feed samples are presented. The separation conditions and experimental reproducibility are also discussed.  相似文献   

20.
A set of derivatives of cyclopentaneacetic acid cis-substituted at position 3 by nucleoside bases (both purines and pyrimidines) were prepared and characterized (see 11, 14 , and 23a, b; Schemes 2–4). These molecules are carbocyclic analogs of 2′,3′-dideoxy-5′-homonucleosides. In this synthesis, the skeleton was constructed from norbornanone and a novel method based on Mitsunobu chemistry used for the introduction of nucleoside-base substituents. The scope of this method was further explored via the preparation of a cyclobutyl analog of dideoxyguanosine (see 17 , Scheme 3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号