首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The thermal decomposition of butene-2-cis at low conversion and its effect on the pyrolysis of propane have been studied in the temperature range 779-812 K. It was established that 2-butene decomposes in a long-chain process, with the chain cycle (Besides the radical path, the molecular reaction can also play a role in the formation of the products.) The thermal decomposition of propane is considerably inhibited by 2-butene, which can be explained by the fact that the less reactive radicals formed in the reactions between the olefin and the chain-carrying radicals regenerate the chain cycle more slowly than the original radicals in the above chain cycle or in the reactions The reactions of the 2-propyl radical are further initiation steps. The ratios of the rate coefficients of the elementary steps of the decomposition (Table III) have been determined via the ratios of the products. Estimation of the radical concentrations indicated that only the methyl, 2-propyl and methylallyl radicals are of importance in the chain termination. On the basis of the inhibition-influenced curves, the role of the bimolecular initiation steps. could be clarified in the presence of 2-butene.  相似文献   

2.
Acetaldehyde oxidation has been studied in experiments at temperatures of 553 and 713 K carried out in a low pressure, static reactor and in numerical modeling calculations using a detailed chemical kinetic reaction mechanism. The results of the experimental study were used to construct and validate the reaction mechanism, which was then used to examine acetaldehydeoxidation in the negative temperature coefficient regime between 550 and 900 K. This mechanism was also tested against independent measurements of acetaldehyde oxidation carried out by Baldwin, Matchan, and Walker. The overall rate of reaction and the properties of the negative temperature coefficient regime were found to be sensitive to the competition between radical decomposition reactions and the addition of molecular oxygen to acetyl and methyl radicals, including particularly During these experiments, an upper limit to the rate of decomposition ofCH3O2H was measured at 553 K. Implications of the results for future kinetic modeling of engine knock are discussed.  相似文献   

3.
Cyclopentane has been decomposed in comparative-rate single-pulse shock-tube experiments. The pyrolytic mechanism involves isomerization to 1-pentene and also a minor pathway leading to cyclopropane and ethylene. This is followed by the decomposition of 1-pentene and cyclopropane. The rate expressions over the temperature range of 1000°–1200° K are Details of the cyclopentane decomposition processes are considered, and it appears that if the trimethylene radical is an intermediate, then ΔHf(trimethylene) ≤ 280 kJ/mol at 300°K.  相似文献   

4.
The decadic extinction coefficient of the methyl radical at 216.4 nm and the rate constant for mutual combination were redetermined as: . The application of the Beer–Lambert law to these measurements was justified experimentally. The absorption spectrum of the methylperoxy radical was characterized as a weak, broad, structureless band, having a maximum at 240 nm with ?(240) = 1.55 × 103 l./mol cm. The mutual interaction of methylperoxy radicals leads to the generation of methoxy and hydroperoxy radicals as a consequence of the nonterminating interaction . Each derivative radical may consume a significant fraction of the methylperoxy radicals, and either of these cross interactions may be made predominant by a suitable choice of oxygen pressure. The mutual interaction was studied under both conditions. The overall mechanism was analyzed by a precise computational method, and the rate constant of the total mutual interaction was estimated as .  相似文献   

5.
On the basis of the thermal decomposition of mixtures of propylene and propane with molar ratios of 0.0–0.33 in the temperature range 779–812K, the influencing functions describing the inhibition by propylene of the decomposition of propane were determined. The rate-reducing effect is explained mainly by the reactions (in which .R = .H, .CH3 and 2-?3H7) and also by the addition reactions It was established that the bulk of the allyl radicals formed participate in the chain step, but, due to their lower reactivity, they restore the decomposition chain more slowly than the original radicals do. From the characteristic change in the ratio υ/υ, the rate ratios of hydrogenabstraction reaction by radicals from propylene and propane could be determined. In these reactions there was no significant difference between the selectivities of the radicals. For an interpretation of the changes, the decomposition mechanism must be completed with the reaction Evaluation of the influencing curves revealed that the initiation reactions must be taken into account. By parameter estimation we have determined the rate ratios characterizing the above initiation reactions, the unimolecular decomposition of propane, hydrogen abstraction by radicals from propane and propylene, intermolecular isomerization of the 2-propyl radical via propane and propylene, and abstraction of propane hydrogens by the ethyl and methyl radicals; these are given in Tables II.  相似文献   

6.
The thermal isomerization of cis-hexatriene (cHT) to cyclohexadiene (CHD) and the dimerization of CHD and trans-hexatriene (tHT) in the liquid phase in the temperature range 380 K-473 K are reported. The rate coefficients are: for the cHT to CHD isomerization for tHT dimerizationlog and for CHD dimerization; endo form exo form © 1993 John Wiley & Sons, Inc.  相似文献   

7.
Study of the thermal decomposition of propane at very low conversions in the temperature range 760–830 K led to refinement of the mechanism of the reaction. The quotient V/V characterizing the two decomposition routes connected with the 1- and 2-propyl radicals proved to depend linearly on the initial propane concentration. This suggested the occurrence of intermolecular radical isomerization: in competition with decomposition of the 2-propyl radical: The linearity led to the conclusion that the selectivity of H-abstraction from the methyl and methylene groups by the methyl radical is practically the same as that by the H atom. The temperature-dependence of this selectivity ( μ = kCH3/kCH2) was given by Further evaluation of the dependence gave the Arrhenius representation for the ratio of the rate coefficients of the above isomerization and decomposition reactions. Steady-state treatment resulted in the rate equation of the process, comparison of which with measurements gave further Arrhenius dependences.  相似文献   

8.
The kinetics of the gamma-radiation-induced free radical chain reaction in solutions of C2Cl3F in cyclohexane (RH) was investigated over a temperature range of 87.5–200°C. The following rate constants and rate constant ratios were determined for the reactions: In competitive experiments in ternary solutions of C2Cl4 and C2Cl3F in cyclohexane the rate constant ratio k2c/k2a was determined By comparing with previous data for the addition of cyclohexyl radicals to other chloroethylenes it is shown that in certain cases the trends in activation energies for cyclohexyl radical addition can be correlated with the C? Cl bond dissociation energies in the adduct radicals.  相似文献   

9.
Chloroethanes react with aqueous caustic to yield either elimination or substitution products. The reaction rates were measured for the dichloroethanes, trichloroethanes, tetrachloroethanes, and pentachloroethane between 283 and 353°K. The constants of HCl eleminations referring to the rate equation are given by all rate constants being in 1./mole·s and R in cal/mole· deg. With ethyl chloride, 1,1-dichloroethane, and 1,1,l-trichloroethane, the elimination is not observed and a slow substitution takes place. The influence of chlorine substituents on both sides of the molecule on mechanism and rate parameters is discussed.  相似文献   

10.
2,4-Dimethylhexene-l has been decomposed in single-pulse shock tube experiments. Rate expressions for the initial reactions are and sec?1 at 1.5–5 atm and 1050°K. This leads to ΔH°f300 (CH2 = C(CH3)CH2) = 124 kJ/mol, or an allylic resonance energy of 50 kJ/mol. Rate expressions for the decomposition of the appropriate olefins which yield isobutenyl radicals and methyl, ethyl, isopropyl, n-propyl, t-butyl, and t-amyl radicals, respectively, are presented. The rate expression for the decomposition of isobutenyl radical is (at the beginning of the fall-off region). For the combination of isobutenyl and methyl radicals, the rate constant at 1020°K is Combination of this number and the calculated rate expression for 2-methylbutene-1 decomposition gives S. (1100) = 470 J/mol °K. This yields It is demonstrated that an upper limit for the rate of hydrogen abstraction by isobutenyl from toluene is   相似文献   

11.
The high temperature kinetics of NH in the pyrolysis of isocyanic acid (HNCO) have been studied in reflected shock wave experiments. Time histories of the NH(X3Σ?) radical were measured using a cw, narrow-linewidth laser absorption diagnostic at 336 nm. The second-order rate coefficients of the reactions: (1) were determined to be: cm3?mol?1?s?1, where f and F define the lower and upper uncertainty limits, respectively. The data for k1a are somewhat better fit by:   相似文献   

12.
A method is described for the measurement of relative rate constants for abstraction of hydrogen from ethylene at temperatures in the region of 750 K. The method is based on the effect of the addition of small quantities of propane and isobutane on the rates of formation of products in the thermal chain reactions of ethylene. On the assumption that methane and ethane are formed by the following reactions, (1) measurements of the ratio of the rates of formation of methane and ethane in the presence and absence of the additive gave the following results: Values for k2 and k3 obtained from these ratios are compared with previous measurements.  相似文献   

13.
The pyrolyses of four alkyl allyl sulfides with substituents on the α? C atom of the alkyl moiety have been studied in a stirred-flow system over the temperature range 340-400°C and pressures between 2 and 12 torr. The only products formed are propene and thioaldehydes. The reactions showed first-order kinetics with the rate coefficients following the Arrhenius equations: Chloromethyl allyl sulfide: Cyanomethyl allyl sulfide: 1-cyanoethyl allyl sulfide: Neopentyl allyl sulfide: The effects of these and other substituents on the reactivity is discussed in relation with the stabilization of a polar six-centered transition state. The results support a non-concerted mechanism where the 1–5 α? H atom shift is assisted by its acidic character.  相似文献   

14.
The thermal decomposition of 1,1,1-trifluoro-2-chloroethane has been investigated in the single-pulse shock tube between 1120° and 1300deg;K at total reflected shock pressures from ~2610 to 3350 torr. Under these conditions, the major reaction is the α,α-elimination of hydrogen chloride, with The decomposition also involves the slower α,β-elimination of hydrogen fluoride, with the first-order rate constant given by At temperatures above 1270°K, two additional minor products were observed. These were identified as CF2CFCl and CF3CHCl2 and suggest C? Cl rupture as a third reaction channel leading to complicated kinetics.  相似文献   

15.
The rate constant for abstraction of hydrogen from isobutane by methyl radicals has been re-examined making use of new measurements at temperatures above 660 K. Most of the data over the temperature range 300–855 K can be accommodated by the following values for the rate constants for abstraction from primary and tertiary hydrogen atoms: This activation energy for abstraction of the tertiary hydrogen atom in isobutane is essentially the same as expressed in a previous evaluation, which considered data only below 500 K, but the magnitude of the rate constant is about 0.25 log units greater.  相似文献   

16.
The kinetics of the gas-phase decomposition of bicyclo[4.1.0]heptane has been studied over the temperature range of 708–769 K at pressures between 1 and 17 torr. Isomerization to 1-methylcyclohex-1-ene, methylenecyclohexane, and cycloheptene accounts for 96–98% of the primary reaction products and occurs by first-order, homogeneous, nonradical processes.   相似文献   

17.
The rate constant of formation, dissociation, and redox reaction of the benzyl radical-copper(II) ion complex have been determined at temperatures from 274 K to 333 K by laser flash photolysis of 1,3-diphenyl-2-propanone (DBK) in a 10% acetonitrile-90% water mixture containing copper(II)perchlorate. Rate constants were calculated from time resolved absorbances of both benzyl radicals (Bz) at 315 nm and benzyl-copper complexes (BzCu2+) at 375 nm. Values of the rate constants of the formation of BzCu2+ complex were fitted to the equation and the rate constant of the reverse reaction of BzCu2+ complex to the equation The rate constant of the redox reaction of BzCu2+ complex to benzyl alcohol and copper(I) ion can be described by the equation The first order rate constant of dissociation of phenylacetyl radical formed initially in the flash photolysis of DBK is given by the equation   相似文献   

18.
The pyrolysis of ethylbenzene has been investigated in shock waves with the laser schlieren technique. Mixtures of 1 and 2% ethylbenzene in krypton were studied for reaction conditions of 1300-1800 K, 70-550 torr. At high temperatures, the initial rapid endothermic dissociation is followed by a region of net exothermic reaction, which is readily understood as arising mainly from methyl radical recombination after dissociation to methyl and benzyl radicals. The initial unimolecular dissociation rates show no detectable dependence on pressure; with ΔH0298 = 75.7 kcal mol?1 these rates are An RRKM extrapolation suggests in excellent agreement with previous lower temperature data.  相似文献   

19.
The pyrolyses of endo- and exo-5-methylbicyclo (2.2.2) oct-2-ene (endo- and exo-MBO) have been studied between 608 and 679°K at pressures between 7 and 37 torr. These reactions correspond to parallel first-order eliminations of propene and ethylene: The rate constants (in sec?1) for endo-MBO are given by and those for exo-MBO by Reaction mechanisms involving diradicals are shown to be compatible with the experimental results. The heats of formation and the entropies of endo and exo-MBO are estimated.  相似文献   

20.
The gas-phase free radical displacement reaction has been studied in the temperature range of 240–290°C and at 140°C with the thermal decomposition of azomethane (AM) and di-tert-butylperoxide (DTBP), respectively, as methyl radical sources. The reaction products of the CD3 radicals were analyzed by mass spectrometry. Assuming negligible isotope effects, Arrhenius parameters for the elementary radical addition reaction were derived: The data are discussed with respect to the back reaction and general features of elementary addition reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号