首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polysulfonylamines. CXXIV. Preparation of Organylmercury(II) Di(methanesulfonyl)amides and Crystal Structure of Ph–Hg–N(SO2Me)2 Four N,N‐disulfonylated organylmercury(II) amides R–Hg–N(SO2Me)2, where R is Me, iPr, Me3SiCH2 or Ph, were obtained on treating the appropriate chlorides RHgCl with AgN(SO2Me)2, and characterized by 1H and 13C NMR spectra. In the crystal structure of the phenyl compound (orthorhombic, space group Pbca, Z = 8, X‐ray diffraction at –95 °C), the molecule exhibits a covalent and significantly bent C–Hg–N grouping [bond angle 172.7(3)°; Hg–C 204.0(8), Hg–N 209.1(7) pm]. One sulfonyl oxygen atom forms a short intramolecular Hg…O contact [296.1(5) pm] and simultaneously catenates glide‐plane related molecules via a second Hg…O interaction 297.6(5) pm], thus conferring upon HgII the effective coordination number 4 and a geometrically irregular coordination polyhedron (bond angles from 173 to 54°).  相似文献   

2.
Crystal and Molecular Structure of (CH3)2SnSAB. (SAB = Dianion of 2-Hydroxy-N-(2-hydroxybenzylidene)-aniline) (CH3)2SnSAB, C15H15NO2Sn (SAB = tridentate dianion of 2-hydroxy-N-(2-hydroxybenzylidene)-aniline in SCHIFF base form) crystallizes in the space group Pben (D) with a = 19.271(5), b = 10.508(2), c = 13.379(1) Å and Z = 8. The structure has been solved using 1307 symmetrical independent reflections and applying the heavy atom method; the position of all atoms, except the H atoms, has been determined. As interatomic distances have been found: Sn? C: 2.117(14), Sn? O:2.112(9), Sn? N:2.229(11) N? C 10 (phenyl group II): 1.462(16), C9-N (SCHIFF base bridging group): 1.257(18), C 9? C8 (phenyl group I): 1.441(18) Å; mean C? C distances in the phenyl groups: 1.403(18) Å. Two molecules at a time have a centre of symmetry and weakly coordinate through two loose Sn? O bridges (intermolecular Sn? O distance: 2.881(8) Å). The individual molecules essentially form a distorted trigonal bipyramid with N and both methyl-C atoms in the equatorial plane; ? CSnC = 138.52(50)°; ? OSnO = 158.58(35)°.  相似文献   

3.
Cyclothiazeno Complexes of Molybdenum(V), Molybdenum(VI), and Tungsten(VI). Crystal Structure of (PPh4)2[MoCl3(N3S2)]2 · 2 CH2Cl2 . From excess trithiazylchloride and molybdenum or tungsten hexacarbonyl, respectively, the cyclothiazeno complexes [MCl3(N3S2)]2(S2N2) are obtained. They possess metal atoms linked via a planar S2N2 ring. The corresponding bromo compounds [MBr3(N3S2)]2(S2N2) can be obtained in liquid bromine from S4N4 and MoBr4 or WBr6, respectively, or from S4N4 with the corresponding metal hexacarbonyls in the presence of bromine. Thermolysis of [WBr3(N3S2)]2(S2N2) yields [WBr3(N3S2)]2 which is dimerized via nitrogen bridges. When [MoCl3(N3S2)]2(S2N2) reacts with tetraphenylphosphonium chloride in dichloromethane, the S2N2 acts as reducing agent, and the paramagnetic molybdenum(V) complex (PPh4)2[MoCl3(N3S2)]2 · 2 CH2Cl2 is obtained (μeff = 1.2 B.M.). The i.r. spectra are reported. The crystal structure of (PPh4)2[MoCl3(N3S2)]2 · 2 CH2Cl2 was determined by X-ray diffraction (2524 independent reflexions, R = 0.052). It crystallizes in the space group P1 with the lattice con- stants a = 943.9, b = 1209.6, c = 1469.2 pm, α = 69.27, β = 72.20 and γ = 82.08°, Z = 1. There are tetraphenylphosphonium cations and centrosymmetric, dimeric anions [MoCl3(N3S2)]22?. The molybdenum atoms are part of six-membered cyclothiazeno rings MoN3S2 with MoN bond lengths of 177 and 197 pm; the N atom with the longer MoN bond is linked to the second Mo atom, so that a planar Mo2N2 ring results; this ring is nearly coplanar with the two MoN3S2 rings. Furthermore, each molybdenum atom is linked with three chlorine atoms with MoCl bond lengths of 240–242 pm, so that the Mo atoms possms a distorted octahedral coordination.  相似文献   

4.
C–H-Activation: Syntheses and Properties of Acetonato( C )-acidophthalocyaninato(2–)metallates(III) of Rhodium and Iridium; Crystal Structure of Tetra(n-butyl)ammonium Acetonato( C )azidophthalocyaninato(2–)iridate(III) Phthalocyaninato(2–)metallate(I) of rhodium and iridium reacts with carbonyl substrates like acetone or acetylacetone and halides or pseudohalides forming acetonato(C)- or acetylacetonato(C)acidophthalocyaninato(2–)metallates(III), that are isolated as tetra(n-butyl)ammonium complex salts (nBu4N)[M(R)(X)pc2–] (M = Rh, Ir; R = aC, acaC; X = Cl, I, N3, SCN/NCS). (nBu4N)[Ir(aC)(N3)pc2–] · 0,25(C2H5)2O · 0,5 CH2Cl2 crystallizes in the triclinic space group P1 with cell parameters a = 16.267(8) Å, b = 17.938(3) Å, c = 18.335(4) Å, α = 74.77(2)°, β = 73.73(3)°, γ = 84.25(3)°, V = 4954(3) Å3, Z = 4. There are two crystallographically independent anions, differing by the orientation of the azido ligand either towards an isoindole group or a Naza bridge of the phthalocyaninate, while the σ-C bonded acetonate is always oriented towards an isoindole group (gauche and ecliptical configuration). The Ir–C distances are 2.12(1) and 2.14(1) Å. Due to the trans influence of the acetonate-C atom the Ir-azide-N distances of 2.22(1)/2.24(1) Å are longer than expected. The electrochemical properties and the optical, vibrational, and 1H-NMR spectra are discussed.  相似文献   

5.
Reactions of Dimethyl Sulfoxide with Molybdenum Tetrabromide and Molybdenum Dibromide Dinitrosyl. Crystal Structure of [MoBr2(NO)2(OSMe2)2] In the cold molybdenum tetrabromide reacts with an equivalent amount of dimethyl sulfoxide forming the solvate [MoBr4(OSMe2)2]; excess dimethyl sulfoxide yields [MoO2Br2(OSMe2)2] which is also obtained by other methods. Molybdenum dibromidedinitrosyl forms the solvate [MoBr2(NO)2(OSMe2)2] in the reaction with dimethyl sulfoxide. According to the i.r. spectra all complexes display O-coordination of the OSMe2 molecules. [MoBr2(NO)2(OSMe2)2] crystallizes monoclinic in the space group P21/c with four formula units per unit cell. The cell dimensions are a = 1236, b = 892, c = 1305 pm, β = 95.2°. 1662 independent observed reflexions were used for refinement; R = 3.8%. The molybdenum atoms are six-coordinated, the O atoms of the dimethyl sulfoxide molecules are in trans-position to the nitrosyl ligands, which form linear groups Mo? N? O.  相似文献   

6.
Preparation and Properties of Phthalocyaninato(2–)indates(III) with Monodentate Acido Ligands; Crystal Structure of Tetra(n-butyl)ammonium cis -Difluorophthalocyaninato(2–)indate(III) Hydrate Tetra(n-butyl)ammonium cis-diacidophthalocyaninato(2–)indates(III) with the monodentate acido ligands fluoride, chloride, cyanide and formiate are synthezised by the reaction of chlorophthalocyaninatoindium(III) or cis-dihydroxophthalocyaninatoindate(III) with the respective tetra(n-butyl)ammonium salt or ammonium formiate and are characterized by their UV/VIS spectra and their vibrational spectra. The difluoro-complex salt crystallizes as a hydrate ((nBu4N)cis[In(F)2pc2–] · H2O) in the monoclinic space group P21/n (no. 14) with cell parameters: a = 13.081(3) Å, b = 13.936(2) Å, c = 23.972(2) Å; β = 97.79(1)°, Z = 4. Hexa-coordinated indium is surrounded by four isoindole nitrogen atoms (Niso) and two cis-positioned fluorine atoms. The average In–F and In–Niso distance are 2.0685(4) and 2.2033(5) Å, respectively, and the F–In–F angle is 81.5(1)°. The In atom is displaced outside the centre (Ct) of the Niso plane towards the fluoride ligands: d(In–Ct) = 0.953(1) Å. The phthalocyaninato(2–) core is nonplanar (unsymmetrical concave distortion).  相似文献   

7.
8.
Rearrangements of (2′-Propinyl)cyclohexadienols and -semibenzenes The acid-catalyzed dienol-benzene rearrangement of 3- and 5-methyl-substituted (2′-propinyl)cyclohexadienols has been investigated. Treatment of the dienols with CF3COOH in CCl4 yields allenyl- and (2′-propinyl)benzenes via [3,4]- and [1,2]-sigmatropic rearrangements, respectively. The reaction with H2SO4 in Et2O leeds to a mixture of allenyl-, 2′-propinyl-, 3′-butinyl- and (2′,3′-butadienyl)benzenes (Scheme 3). The latter are products of a thermal semibenzene-benzene rearrangement (cf. Scheme 9). The corresponding semibenzenes have been prepared by dehydration of the cyclohexadienols with H2SO4 or POCl3 (Schemes 6 and 7). Under acidic conditions, the p-(2′-propinyl)semibenzenes 33–35 (Scheme 8) undergo [3,4]- and [1,2]-sigmatropic rearrangements to give again allenyl- and (2′-propinyl)benzenes, whereas the thermal rearrangements to the 3′-butinyl- and (2′,3′-butadienyl)benzenes (Scheme 9) involves a radical mechanism. In contrast, the o-(2′-propinyl)semibenzene b (Scheme 7) leads to (2′,3′-butadienyl)benzene 32 via a thermal [3,3]-sigmatropic rearrangement.  相似文献   

9.
The syntheses of a number of new Bpoc-amino acids and the preparation of some activated esters of Bpoc-amino acids are described. In recent work on the total synthesis of calcitonin hormones the Bpoc residue has been found to be very useful for the selective protection of α-amino groups of complicated intermediate peptide fragments. The reagent preferentially used for the introduction of the Bpoc group into amino acids, [2-(p-biphenylyl)-isopropyl]-phenyl-carbonate (I), is stable at 0°, but undergoes at higher temperatures a decomposition which is a accelerated by phenol. Based on the reaction products formed — [2-(p-biphenylyl)-isopropyl]-phenyl-ether (II), 2-(p-biphenylyl)-propene (III), and phenol — a scheme is proposed for this thermal decomposition, and the possibility of a correlation between the stability of carbonates R3C—O—CO—OC6H5 and the rate of the acidolytic cleavage of urethanes R3C—O—CO—NHR′ depending on the substituents R is discussed.  相似文献   

10.
11.
12.
13.
Dimethylsulfoxide Complexes of Beryllium(II) Chloride. Crystal Structures of [Be(OSMe2)4]Cl2, [Be(OSMe2)3(H2O)]Cl2 and [Be(OSMe2)2(H2O)2]Cl2 Single crystals of the mixed ligand complexes [Be(OSMe2)3(H2O)]Cl2 ( 2 ) and [Be(OSMe2)2(H2O)2]Cl2 ( 3 ) were obtained from saturated solutions of [Be(OSMe2)4]Cl2 ( 1 ) in acetonitrile and dichloromethane, respectively, in the presence of traces of water, while single crystals of 1 were available by reaction of the carbodiphosphorane complex [BeCl2{C(PPh3)2}] with DMSO/toluene solution. All complexes are characterized by X‐ray diffraction and IR spectroscopy. 1 : Space group Pbca, Z = 8, lattice dimensions at 193 K: a = 962.4(1), b = 1888.8(2), c = 2115.8(2) pm, R1 = 0.0344. 1 consists of [Be(OSMe2)4]2+ cations with distorted tetrahedral coordination of the oxygen atoms of the DMSO molecules with Be–O distances of 161.9 pm on average, and chloride ions. 2 : Space group , Z = 2, lattice dimensions at 193 K: a = 903.9(2), b = 925.2(3), c = 1121.3(3) pm, α = 93.65(3)°, β = 108.03(3)°, γ = 115.20(3)°, R1 = 0.0472. 3 : Space group , Z = 2, lattice dimensions at 173 K: a = 788.2(2), b = 801.6(2), c = 1070.7(3) pm, α = 86.66(2)°, β = 83.80(2)°, γ = 71.00(2)°, R1 = 0.0699. 2 and 3 also form dications with distorted tetrahedral coordination of the Be2+ ions by the oxygen atoms of DMSO and water molecules, respectively. The chloride ions are associated by strong hydrogen bonds O–H···Cl to give three‐dimensional networks.  相似文献   

14.
15.
Reaction of Molybdenum Pentachloride with (SCN)2, (SeCN)2, and ICN By reaction of MoCl5 with (SCN)2, (SeCN)2, and ICN in CCl4 or H2CCl2 the compounds MoCl5(NCS)2, MoCl5(NCSe)2, and MoCl5NCI were obtained. They are very sensitive towards hydrolysis and decompose on heating. The compounds are characterized by their vibrational and EPR spectra which indicate that the pseudohalogen is bonded via a nitrogen atom.  相似文献   

16.
Synthesis of Y2O2(CN2) and Luminescence Properties of Y2O2(CN2):Eu Crystalline powders of the new compound Y2O2(CN2) were prepared by solid state reactions from different mixtures of YCl3/YOCl/Y2O3 and Li2(CN2) at temperatures between 620 °C and 650 °C. Structure refinements based on X‐ray powder diffraction revealed that trigonal Y2O2(CN2) crystallizes with a structure that is closely related to that of Y2O2S, whereas linear N‐C‐N units replace sulphur atoms in Y2O2S. In addition, a hexagonal polytype of Y2O2(CN2) was obtained in which a different stacking sequence of yttrium atoms creates a doubling of the c‐axis. Europium‐doped samples of Y2O2(CN2) were prepared and the luminescence properties of Y2O2(CN2):Eu are presented.  相似文献   

17.
Diastereoselective Synthesis of β-Methyl-homoallylic Alcohols by lk-Addition of (2-Butenyl)triphenoxytitanium to Aldehydes (2-Butenyl)triphenoxytitanium, prepared in situ from (2-butenyl)magnesium halogenide and chlorotriphenoxytitanium in tetrahydrofuran solution, adds to aldehydes with like (Re,Re/Si,Si?Re*,Re*) relative topicity in diastereoselectivities of 80–99%.  相似文献   

18.
19.
Mono- and Binuclear Dinitrosyl Complexes of Molybdenum and Tungsten. Crystal Structures of (PPh3Me)2[WCl4(NO)2], (PPh3Me)2[MoCl3(NO)2]2, and (PPh3Me)2[WCl3(NO)2]2 The complexes (PPh3Me)2[MCl4(NO)2] (M = Mo, W), and (PPh3Me)2[MCl3(NO)2]2, respectively, are prepared by reactions of the polymeric compounds MCl2(NO)2 with triphenylmethylphosphonium chloride in CH2Cl2, forming green crystals. According to the IR spectra the nitrosyl groups are in cis-position in all cases. The tungsten compounds as well as (PPh3Me)2[MoCl3(NO)2]2 were characterized by structure determinations with X-ray methods. (PPh3Me)2[WCl4(NO)2]: space group C2/c, Z = 4. a = 1874, b = 1046, c = 2263 pm, β = 119.99°. Structure determination with 3492 independent reflexions, R = 0.057. The compound consists of PPh3Me ions, and anions [WCl4(NO)2]2? with the nitrosyl groups in cis-position (symmetry C2v). (PPh3Me)2[WCl3(NO)2]2: Space group C2/c, Z = 4. Structure determination with 2947 independent reflexions, R = 0.059. (PPH3Me)2[MoCl3(NO)2]2: Space group P1 , Z = 1. a = 989, b = 1134, c = 1186 pm; α = 63.25°, β = 80.69°, γ = 69.94°. Structure determination with 3326 independent reflexions, R = 0.046. The compounds consist of PPh3Me ions, and centrosymmetric anions [MCl3(NO)2]22?, in which the metal atoms are associated via MCl2M bridges of slightly different lengths. One of the NO groups is in an axial position, the other one in equatorial position (symmetry C2h).  相似文献   

20.
Syntheses and Properties of Phthalocyaninato(2–)metallates(I) of Cobalt, Rhodium, and Iridium; Crystal Structure of Tetra(n-butyl)ammonium Phthalocyaninato(2–)cobaltate(I) Acetone Solvate Cobaltphthalocyaninate(2–) reacts with tetra(n-butyl)ammonium boranate in acetone yielding soluble tetra(n-butyl)ammonium phthalocyaninato(2–)cobaltate(I). The green platelets of its acetone solvate crystallize in the monoclinic space group P1 21/c (no. 14) with cell parameters: a = 12.370(1) Å, b = 23.370(3) Å, c = 15.952(8) Å, β = 93.55(2)°, Z = 4. The Co atom is located in the centre of the distorted phthalocyaninate (waving distortion). The average Co–Niso distance is 1.894 Å. Dichlorophthalocyaninato(2–)metal(III) acid of rhodium and iridium reacts in boiling sodium isopropylate/isopropanol with tetra(n-butyl)ammonium boranate yielding violet tetra(n-butyl)ammonium phthalocyaninato(2–)rhodate(I) and -iridate(I). The UV-VIS-NIR spectra show normal π–π* transitions of the pc2– ligand which are shifted in the series Co < Rh < Ir to higher energy. Absorbances (in 103 cm–1) at 18.2/19.4/21.4/23.6 (Co), 22.0/22.8/40.4 (Rh) and 25.6 (Ir) are assigned to M → pc2– charge transfer transitions. The vibrational spectra are typical for the pc2– ligand. The very low absorbance of the IR bands at 916/1067/1330 cm–1 is diagnostic for low-valent metal phthalocyaninates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号