首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polymerization of methyl methacrylate in visible light was studied at 30°C using the isoquino-line–chlorine charge-transfer complex as the photoinitiator. Analyses of kinetic and other data indicate that the polymerization proceeds via a radical mechanism and the termination is initiator dependent. Chain termination via degradative chain (initiator) transfer appears to be significant.  相似文献   

2.
In catalytic concentrations (10?5?10?4 mol l?1) sulphur dioxide induces polymerization of MMA, particularly on photoactivation. The effective initiating species appears to be the monomer-SO2 complex rather than free SO2. A mechanism involving biradical initiation by decomposition of the initiating species, linear propagation in two directions, and significant termination of growing chains by chain transfer with initiating species has been suggested. The initiator transfer constant is 1.6 at 40°.  相似文献   

3.
Polymerization of MMA was carried out in the presence of visible light (440 nm) with the use of γ-picoline-bromine charge transfer complex as the initiator. The rate of polymerization Rp increases with increasing monomer concentration and the monomer exponent was computed to be unity. The rate of polymerization increases with increasing initiator concentration. The initiator exponent was computed to be 0.5. The reaction was carried out at three different temperatures and the overall activation energy was calculated to be 4.5 kcal/mol. The polymerization was inhibited in the presence of hydroquinone. Kinetic and other evidence indicates that the overall polymerization takes place by a radical mechanism.  相似文献   

4.
Photopolymerization of MMA in visible light was studied at 40 using THF-SO2 complex as the photoinitiator. Initiator exponent was 0.19 and monomer exponent lay between 1.0 and 1.5, depending on thenature of solvent. Analysis of kinetic and other data indicate that the polymerization proceeds by a radical mechanism and termination is initiator dependent. Chain termination via degradative chain (initiator) transfer appears to be significant feature.  相似文献   

5.
6.
Photopolymerization of the vinyl monomer (M) of methyl methacrylate (MMA) was kinetically studied by using near-UV/visible light at 40°C and employing a morpholine (MOR)–sulfur dioxide (SO2) charge-transfer (C-T) complex as the photoinitiator. The rate of polymerization (RP) was found to be dependent on the morpholine: sulfur dioxide mole ratio; the 1 : 2 (MOR–SO2) complex acted as the latent initiator complex C which underwent further complexation with the monomer molecules to give the actual initiating complex I. Using the 1 : 2 (MOR–SO2) C-T complex as the latent initiator, the observed kinetics may be expressed as RP [MOR–SO2]0.27[M]1.10. Benzoquinone behaved as a strong inhibitor. Polymers obtained tested positive for the incorporation of a sulphonate-type end group. Polymerization followed a radical mechanism. Kinetic nonideality as revealed by a low initiator exponent and monomer exponent of greater than unity was explained on the basis of a prominent primary radical termination effect. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1973–1979, 1998  相似文献   

7.
The polymerization of MMA was kinetically studied in the presence of visible light (using a 125-W high-pressure mercury vapor lamp with fluorescent coating, without a filter), a THF—bromine charge-transfer complex being used as the photoinitiator. The initiator exponent was 0.5 in bulk polymerization. The monomer exponent varied from about 1.2 to about 2.5, depending on the nature of the solvent used; the initiator exponent also varied in diluted systems, depending on the nature and proportion of the solvent, the variation being from a value of 0.5 in bulk system to zero or almost zero at about 25% (v/v) solvent concentration. Other kinetic parameters, viz., kp2/kt and the activation energy for polymerization, were determined and are reported. Kinetic and other evidence indicates that the photopolymerization takes place by a radical mechanism and termination is bimolecular in nature in bulk systems; in dilute systems, termination by initiator complex assumes predominance, particularly at high solvent concentrations (≥25% v/v).  相似文献   

8.
Polymerization of methyl methacrylate (MMA) was kinetically studied under photo condition using near UV visible light at 40°C and employing morpholine (MOR)–chlorine (Cl2) charge transfer (C-T) complex as the photoinitiator. The rate of polymerization (Rp) was dependent on morpholine/chlorine mole ratio; the 1 : 2 (MOR–Cl2) C-T complex acted as the latent initiator complex, C, which underwent further complexation with the monomer molecules to give the actual initiator complex, I. Using 1 : 2 (MOR-Cl2) C-T complex as the latent initiator, the initiator exponent evaluated for bulk photopolymerization of MMA was 0.071 and monomer exponent determined from studies of photopolymerization in benzene diluted system was 1.10. Benzoquinone behaved as a strong inhibitor and the polymers tested positive for the incorporation of chlorine atom end groups. Polymerization followed a radical mechanism. Kinetic nonideality as revealed by low (≪0.5) initiator exponent and a monomer exponent of greater than unity were explained in terms of primary radical termination effect. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1681–1687, 1997  相似文献   

9.
Polymerization of MMA was carried out in presence of visible light (440 nm), quinoline-bromine charge-transfer complex being used as the photoinitiator. The initiator exponent was observed to be 0.5 up to 0.014 M initiator concentration; when chloroform was used as the solvent, the monomer exponent was found to be unity. The polymerization was inhibited in presence of hydroquinone but little inhibitory effect was observed in the presence of air. An average value of k2p/kt for this photopolymerization system was found to be (1.08 ± 0.22) × 10-2. Kinetic and other evidence indicates that the overall polymerization takes place by a radical mechanism.  相似文献   

10.
11.
12.
13.
Photopolymerization of MMA was carried out with quinaldine–bromine (QN–Br2) and lutidine–bromine (LU–Br2) charge-transfer complexes as initiators. The rate of polymerization Rp increased with rising monomer concentration and the monomer exponent was computed as unity. At first the rate of polymerization accelerated and then reduced as the initiator concentration was increased. The initiator exponent was 0.5. The reaction was carried out at three different temperatures and overall activation energy was calculated at 4.0 kcal/mol. The kinetic data and other evidence indicate that the overall polymerization takes place in a radical mechanism. A suitable mechanism is suggested.  相似文献   

14.
15.
Polymerization of MMA was carried out under visible light (440 nm) with the use of pyridine–bromine (Py–Br2) charge-transfer (CT) complex as the photoinitiator. Initiator exponent and intensity exponent were 0.5 and 0.43, respectively, and the monomer exponent was found to be dependent on the nature of the solvent or diluent used. The Polymerization was inhibited in the presence of hydroquinone, but oxygen had very little inhibitory effect. An average value of kp2/kt for this polymerization system was 1.19 × 10?2, and the activation energy of photopolymerization was 4.95 kcal/mole. Kinetic data and other evidence indicate that the overall polymerization takes place by a radical mechanism. With Py–Br2 complex as the photoinitiator, the order of polymerizability at 40°C was found to be MMA, EMA ? Sty, MA.  相似文献   

16.
A kinetic study has been made of polymerization of methyl methacrylate initiated by an electron donor–acceptor complex of liquid SO2 (electron acceptor) and nicotine (donor) in the presence of carbon tetrachloride. It is concluded that the polymerization proceeds through free-radical intermediates similar to the cases of liquid SO2–pyridine and liquid SO2–poly(2-vinylpyridine) complexes. The overall rate of polymerization is proportional to the square root of both liquid SO2 and nicotine concentrations, and the values of kp/kt½ under various polymerization conditions are in satisfactory agreement with the literature values. For the activation energy of initiation, 13.6 kcal/mole is estimated from the kp/kt½ values obtained at temperatures ranging from 0 to 80°C.  相似文献   

17.
A kinetic study has been made of the polymerization of methyl methacrylate (MMA) initiated by a charge-transfer complex of poly-2-vinylpyridine (electron donor) and liquid sulfur dioxide (acceptor) in the presence of carbon tetrachloride. It is concluded that the polymerization proceeds through free-radical intermediates, as with the pyridine-liquid sulfur dioxide complex system. The association constants K of acceptor and polymer electron donors which range widely in their molecular weight were determined spectrophotometrically, and it has been found that both K and overall rate of polymerization Rp of MMA decrease with increasing molecular weight of polymer donor; contrary to this, molecular weight of PMMA formed increases with increasing molecular weight of the polymer donor. Other kinetic behaviors was essentially the same as in the pyridine–liquid sulfur dioxide system, i.e., Rp is proportional to the square root of the concentration of the complex and to the 3/2-order of the monomer concentration; Rp is clearly sensitive to the carbon tetrachloride concentration at low concentration of carbon tetrachloride, but for a higher concentration it is practically independent of the carbon tetrachloride concentration. It has been deduced from a kinetic mechanism for the initiation that a primary radical may be produced from the reduction of carbon tetrachloride by an associated complex consisting of liquid sulfur dioxide–polymer donor and the monomer.  相似文献   

18.
The polymerization of methyl methacrylate can be initiated by a charge-transfer complex of liquid sulfur dioxide and pyridine in the presence of carbon tetrachloride. The molar ratio of sulfur dioxide and pyridine which participated in the complex was found from a spectrophotometric study to be 2:1. The polymerization proceeds through free-radical intermediates. The overall rate of polymerization is proportional to the square root of the concentration of the complex, and the values of kp/kt1/2 under the various polymerization conditions were satisfactorily consistent with the literature value. For the activation energy of the overall reaction, 8.2 kcal./mole was obtained, and for initiation, 9.7 kcal./mole was evaluated from the values of kp/kt1/2. It was deduced from a kinetic mechanism for the initiation that a primary radical may be produced from the reduction of carbon tetrachloride by an associated complex consisting of liquid sulfur dioxide–pyridine complex and the monomer.  相似文献   

19.
Low concentrations of bromine (0.008–0.06M) were used to initiate photopolymerization of MMA in bulk and in diluted (near bulk) systems, the diluents or solvents used being benzene, toluene, dioxane, tetrahydrofuran, carbon tetrachloride, chloroform, methylene chloride, and methanol. Polymerization in bulk follows usual free-radical kinetics. Inert solvents (benzene, toluene) as well as the other solvents used enhance the rate of polymerization MMA even when used in the range of catalytic concentrations (0.04–0.4M). An initiation mechanism involving solvent molecules appears to be predominant in diluted systems.  相似文献   

20.
The polymerization of methyl methacrylate (MMA) initiated by tri-n-butylborane (TBB) was studied in the presence of various organic halides (R′X). It was found that R′X accelerated the polymerization of MMA. Aliphatic halides were more effective than aromatic halides. Cocatalytic effects of butyl halides decreased in the order: n -BuI > n -BuBr > n -BuCl; n -BuBr ? sec-BuBr > i-BuBr > tert-BuBr. In the polymerization of MMA by TBB- n -BuI, the initial rate of polymerization was found to be proportional to the concentration of MMA and to the square root of the concentration of TBB-n-BuI. The apparent activation energy was 5.3 kcal/mole. From this and other results, it was assumed that the polymerization of MMA by this initiator system proceeds by a radical mechanism via a weak complex between TBB and R′X; alkyl radicals are formed by the interaction of R′X with TBB. The TBB–R′X system can initiate the polymerization of MMA and AN, but is ineffective in the polymerization of styrene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号