首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The [Ph4Sb]4 +[Sb4I16]4– · 2Me2C=O and [Ph4Sb]3 +[Sb5I18]3– complexes were synthesized by reacting tetraphenylstibonium salts Ph4SbX (X = I, OSO2C6H4Me-4) with antimony triiodide in acetone. According to X-ray diffraction data, their tetra- and pentanuclear anions [Sb4I16]4– and [Sb5I18]3– have cyclic and linear structure, respectively.  相似文献   

2.
3.
4.
cis‐trans‐Isomerism in (Me4Sb)2[Ph2Sb2I6] Crystals of cis‐(Me4Sb)2[Ph2Sb2I6] ( 1 a ) are formed by reaction of PhSbI2 and Me4SbI in ethanol/petroleum ether at –7 °C. In ethanol/acetone crystals of trans‐(Me4Sb)2[Ph2Sb2I6] · acetone ( 1 b ) form. The X‐ray crystal structure analyses reveal that both isomers consist of tetrahedral cations and of dimeric anions with the geometry of two edge sharing tetragonal pyramids. The phenyl groups possess apical cis ( 1 a ) or trans ( 1 b ) positions relative to the I2SbI2SbI2 plane. The acetone molecules in 1 b are non coordinating.  相似文献   

5.
Summary.  The reaction of elemental antimony with elemental sulfur and [Ph4P]Br in an aqueous solution of neopentanediamine under solvothermal conditions yields yellow needles of the new thioantimonate(III) [Ph4P]2[Sb6S10]. The structure consists of [Ph4P]+ cations and infinite one-dimensional anionic (Sb6S10 2−)n chains running along the crystallographic a axis. The chains are composed of 10-membered Sb5S5 rings with alternating Sb and S atoms and separated by the tetraphenylphosphonium cations. Upon heating the compound decomposes in two distinct steps, starting at about 100°C. The final product was identified by X-ray powder diffractometry as Sb2S3. Received December 17, 1999. Accepted (revised) February 7, 2000  相似文献   

6.
7.
8.
Russian Journal of General Chemistry - Palladium phosphonium complexes with mononuclear anions [Ph3PCH2CN][PdBr4], [Ph4P][PdBr4], and [Ph3PC5H9-cyclo][PdBr3(Et2SO)] were synthesized by the reaction...  相似文献   

9.
Chloro- and Polyselenoselenates(II): Synthesis, Structure, and Properties of [Ph3(C2H4OH)P]2[SeCl4] · MeCN, [Ph4P]2[Se2Cl6], and [Ph4P]2[Se(Se5)2] By symproportionation of elemental selenium and SeCl4 in polar protic solvents the novel chloroselenates(+II), [SeCl4]2? and [Se2Cl6]2?, could be stabilized; they were crystallized with voluminous organic cations. They were characterized from complete X-ray structure analysis. Yellow-orange [Ph3(C2H4OH)P]2[SeCl4] · MeCN (space group P1 , a = 10.535(4), b = 12.204(5), c = 16.845(6) Å, α = 77.09(3)°, β = 76.40(3)°, γ = 82.75(3)° at 140 K) contains in its crystal structure monomeric [SeCl4]2? anions with square-planar coordination of Se(+II). The mean Se? Cl bond length is 2.441 Å. In yellow [Ph4P]2[Se2Cl6] (space group P1 , a = 10.269(3), b = 10.836(4), c = 10.872(3) Å, α = 80.26(3)°, β = 79.84(2)°, γ = 72.21(3)° at 140 K) a dinuclear centrosymmetric [Se2Cl6]2? anion, also with square-planar coordinated Se(+II), is observed. The average terminal and bridging Se? Cl bond distances are 2.273 and 2.680 Å, respectively. From redox reactions of elemental Se with boranate/thiolate in ethanol/DMF the bis(pentaselenido)selenate(+II) anion [Se(Se5)2]2? was prepared as a novel type of a mixed-valent chalcogenide. In dark-red-brown [Ph4P]2[Se(Se5)2] (space group P21/n, a = 12.748(4), b = 14.659(5), c = 14.036(5) Å, β = 108.53(3)° at 140 K) centrosymmetric molecular [Se(Se5)2]2? anions with square-planar coordination of the central Se(+II) by two bidentate pentaselenide ligands is observed (mean Se? Se bond lengths: 2.658 Å at Se(+II), 2.322 Å in [Se5]2?). The resulting six-membered chelate rings with chair conformation are spirocyclically linked through the central Se(+II). The vibrational spectra of the new anions are reported.  相似文献   

10.
The two ionic compounds [Ph4P][NTf2] and Cs[NTf2] were qualified to be suitable liquid materials for different high temperature applications. Development and optimization of these application techniques require knowledge of the thermodynamic properties of vaporization. Vapor pressures and vaporization enthalpies have been measured by using quartz-crystal microbalance. Solubility parameters and miscibility of ionic liquids in practically relevant solvents were assessed.  相似文献   

11.
12.
13.
Viologens readily thread bis‐p‐phenylene crown ethers to form [2]pseudorotaxanes. However, the binding of sterically hindered 3,3′‐dimethylviologens is very weak. Density functional theory (DFT) calculations indicated that the additional energy cost of “flattening” is substantial, 55 kJ mol?1, and prevents the formation of a stable host–guest complex. The structures of [2]pseudorotaxanes determined by X‐ray crystallography are in good agreement with the NMR characterisation and DFT results. Their association constants and thermodynamic parameters in solution were measured by using a dilution method and, for the first time, by host–guest nuclear Overhauser effect (NOE) correlations. The NOE approach was subsequently applied to study the sterically hindered analogues and it was shown that the binding in 3,3′‐dimethyl‐N,N‐dibenzyl [2]pseudorotaxane is by 8.5 kJ mol?1 weaker than in its regular analogue. The proposed technique helps to quantify weak interactions in [2]pseudorotaxanes and can be applied to other host‐guest complexes.  相似文献   

14.
Crystal Structures of [Ph3PMe]Cl·CH2Cl2, [Ph4P]NO3·CH2Cl2, and [Ph4P]2[SiF6]·CH2Cl2 The crystal structures of the title compounds are determined by X‐ray diffraction. In all cases, the included dichloromethane molecules as well as the phosphonium cations are involved to form hydrogen bridges with the anions. [Ph3PMe]Cl·CH2Cl2 ( 1 ): Space group , Z = 2, lattice dimensions at 100 K: a = 890.3(1), b = 988.0(1), c = 1162.5(1) pm, α = 106.57(1)°, β = 91.79(1)°, γ = 92.60(1)°, R1 = 0.0253. [Ph4P]NO3·CH2Cl2 ( 2 ): Space group P21/n, Z = 4, lattice dimensions at 193 K: a = 1057.0(1), b = 1666.0(1), c = 1358.9(1) pm, β = 100.10(1)°, R1 = 0.0359. [Ph4P]2[SiF6]·CH2Cl2 ( 3 ): Space group , Z = 2, lattice dimensions at 193 K: a = 1063.9(1), b = 1233.1(1), c = 1782.5(2) pm, α = 76.88(1)°, β = 83.46(1)°, γ = 72.29(1)°, R1 = 0.0332.  相似文献   

15.
The homoleptic complexes [Ph(4)P](2)[Co[N(CN)(2)](4)] and [Ph(4)P][M[N(CN)(2)](3)] [M = Co, Mn] have been structurally as well as magnetically characterized. The complexes containing [M[N(CN)(2)](4)](2-) form 1-D chains, which are bridged via a common dicyanamide ligand in [M[N(CN)(2)](3)](-) to form a 2-D structure. The five-atom [NCNCN](-) bridging ligands lead to weak magnetic coupling along a chain. The six [NCNCN](-) ligands lead to a (4)T(1g) ground state for Co(II) which has an unquenched spin-orbit coupling that is reflected in the magnetic properties. Long-range magnetic ordering was not observed in any of these materials.  相似文献   

16.
Synthesis and Crystal Structure of [Li(thf)4]2[Bi4I14(thf)2], [Li(thf)4]4[Bi5I19], and (Ph4P)4[Bi6I22] Solutions of BiI3 in THF or methanol react with MI (M = Li, Na) to form polynuclear iodo complexes of bismuth. The syntheses and results of X-ray structure analyses of compounds [Li(thf)4]2[Bi4I14(thf)2], [Li(thf)4]4[Bi5I19], [Na(thf)6]4[Bi6I22] and (Ph4P)4[Bi6I22] are described. The anions of these compounds consist of edge-sharing BiI6 and BiI5(thf) octahedra. The Bi atoms lie in a plane and are coordinated by bridging and terminal I atoms and by THF ligands in a distorted octahedral fashion. [Li(thf)4]2[Bi4I14(thf)2]: Space group P1 (No. 2), a = 1 159.9(6), b = 1 364.6(7), c = 1 426.5(7) pm, α = 114.05(3), β = 90.01(3), γ = 100.62(3)°. [Li(thf)4]4[Bi5I19]: Space group P21/n (No. 14), a = 1 653.0(9), b = 4 350(4), c = 1 836.3(13) pm, β = 114.70(4)°. [Na(thf)6]4[Bi6I22]: Space group P21/n (No. 14), a = 1 636.4(3), b = 2 926.7(7), c = 1 845.8(4) pm, β = 111.42(2)°. (Ph4P)4[Bi6I22]: Space group P1 (No. 2), a = 1 368.6(7), b = 1 508.1(9), c = 1 684.9(8) pm, α = 98.28(4), β = 95.13(4), γ = 109.48(4)°.  相似文献   

17.
The coordination chemistry of the stiboranes Ph4Sb(OTf) ( 1 a , OTf = OSO2CF3) and Ph3Sb(OTf)2 ( 3 ) with Lewis bases has been investigated. The significant steric encumbrance of the Sb center in 1 a precludes interaction with most ligands, but the relatively low steric demands of 4‐methylpyridine‐N‐oxide (OPyrMe) and OPMe3 enabled the characterization of [Ph4Sb(OPyrMe)][OTf] ( 2 a ) and [Ph4Sb(OPMe3)][OTf] ( 2 b ), rare examples of structurally characterized complexes of stibonium acceptors. In contrast, 3 was found to engage a variety of Lewis bases, forming stable isolable complexes of the form [Ph3Sb(donor)2][OTf]2 [donor=OPMe3 ( 6 a ), OPCy3 ( 6 b , Cy=cyclohexyl), OPPh3 ( 6 c ), OPyrMe ( 6 d )], [Ph3Sb(dmap)2(OTf)][OTf] ( 6 e , dmap=4‐(dimethylamino)pyridine) and [Ph3Sb(donor)(OTf)][OTf] [donor=1,10‐phenanthroline ( 7 a ) or 2,2′‐bipy ( 7 b , bipy=bipyridine)]. These compounds exhibit significant structural diversity in the solid‐state, and undergo ligand exchange reactions in line with their assignment as coordination complexes. Compound 3 did not form stable complexes with phosphine donors, with reactions instead leading to redox processes yielding SbPh3 and products of phosphine oxidation.  相似文献   

18.
Wolff M  Okrut A  Feldmann C 《Inorganic chemistry》2011,50(22):11683-11694
The five polyhalides [(Ph)(3)PBr][Br(7)], [(Bz)(Ph)(3)P](2)[Br(8)], [(n-Bu)(3)MeN](2)[Br(20)], [C(4)MPyr](2)[Br(20)] ([C(4)MPyr] = N-butyl-N-methylpyrrolidinium), and [(Ph)(3)PCl](2)[Cl(2)I(14)] were prepared by the reaction of dibromine and iodine monochloride in ionic liquids. The compounds [(Ph)(3)PBr][Br(7)] and [(Bz)(Ph)(3)P](2)[Br(8)] contain discrete pyramidal [Br(7)](-) and Z-shaped [Br(8)](2-) polybromide anions. [(n-Bu)(3)MeN](2)[Br(20)] and [C(4)MPyr](2)[Br(20)] exhibit new infinite two- and three-dimensional polybromide networks and contain the highest percentage of dibromine ever observed in a compound. [(Ph)(3)PCl](2)[Cl(2)I(14)] also consists of a three-dimensional network and is the first example of an infinite polyiodine chloride. All compounds were obtained from ionic liquids as the solvent that, on the one hand, guarantees for a high stability against strongly oxidizing Br(2) and ICl and that, on the other hand, reduces the high volatility of the molecular halogens.  相似文献   

19.
The ammoniate [K17(Sb8)2(NH2)] · 17.5NH3 was synthesized by reduction of antimony with potassium in liquid ammonia. Single crystals were isolated and characterized by low temperature X‐ray structure analysis. [K17(Sb8)2(NH2)] · 17.5NH3 crystallizes in the space group P21/c (No. 14) with a = 12.976(1) Å, b = 24.536(1) Å, c = 22.858(1) Å and β = 99.17(1)°. The ammoniate contains crown‐shaped [Sb8]8? Zintl anions which are analogous to S8 rings. The presence of amide NH2? as an additional anion is deduced from coordination observations and the close similarity of structural features to the structure of KNH2.  相似文献   

20.
Iodoplumbates with Polymeric Anions – Synthesis and Crystal Structures of [Na3(OCMe2)12][Pb4I11(OCMe2)], (Ph4P)2[Pb5I12], and (Ph4P)4[Pb15I34(dmf)6] Reactions of PbI2 with NaI in polar organic solvents followed by crystallization with large cations yield iodoplumbate complexes with various compositions and structures. [Na3(OCMe2)12][Pb4I11(OCMe2)] 3 , (Ph4P)2[Pb5I12] 4 and (Ph4P)4[Pb15I34(dmf)6] 7 contain one-dimensional infinite anionic chains of face- or edge-sharing PbI6 or PbI5L (L = acetone, DMF) octahedra. [Na3(OCMe2)12][Pb4I11(OCMe2)] 3 : Space group P1 (No. 1), a = 1120.3(5), b = 1265.3(6), c = 1608.3(8) pm, α = 74.64(4), β = 70.40(4), γ = 85.24(4)°, V = 2071(2) · 106 pm3; (Ph4P)2[Pb5I12] 4 : Space group C2/c (No. 15), a = 787.00(10), b = 2812.0(5), c = 3115.9(5) pm, β = 96.240(13)°, V = 6885(2) · 106 pm3; (Ph4P)4[Pb15I34(dmf)6] 7 : Space group P21/n (No. 14), a = 2278.8(4), b = 1782.6(3), c = 2616.8(4) pm, β = 114.432(13)°, V = 9678(3) · 106 pm3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号