首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
《Tetrahedron》1988,44(6):1679-1684
Mechanistic studies of the nitration of hexamathylanetetramine (1) and some derivatives are reported and are compared with acetylation reactions. Nitration reactions, with nitric acid, were carried out using mixtures of [15N4]- and [14N4]-compounds and the destination of the nitrogen-isotopes in the products was determined mass spectrometrically. The results show that in nitration of (1) to give 3,7-dinitro-l,3,5,7-tetraazablcyclo[3.3.1]nonane (DPT) extensive ring cleavage occurs to give species containing single amino-nitrogen fragments. However the nitration of 3,7-diacetyl-1,3,5,7-tetraazabicyclo(3.3.1]nonane (DAPT) to 1,5-diacetyl-3,7-dinitro-1,3,5,7-tetraazacyclooctane (DADN) involves selective cleavage of the methylene bridge. A synthesis of DADN by acetolysis of DPT is reported.  相似文献   

2.
A collisional induced dissociation study of 1,3,5-trinitro-1,3,5 triazacyclohexane (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX) was carried out using mass analyzed kinetic energy spectrometry. High resolution mass spectra and mass analyzed ion kinetic energy/collisional induced dissociation spectra of RDX and HMX were recorded in the electron impact, chemical ionization and negative ion chemical ionization modes. Fragmentation pathways of the compounds investigated were determined in all three modes of ionization. It was found that a major part of the fragment ions in RDX and HMX originate from formation of the aduct ions [M+NO]+ and [M+NO2]+ in electron impact and chemical ionization, and from [M+NO]? and [M+NO2]? in negative chemical ionization, followed by dissociation.  相似文献   

3.
Under positive ion chemical ionization conditions with ammonla at relatively low pressure, aromatic nitro compounds do not form [M + H]+ ions but often form ionic clusters [M + NH4]+ and [M + N2H7]+. Nitrobenzene forms a cluster [2M + NH4]+ and aniline, formed by nucleophilic substitution, leads to a cluster [anilinium ion + nitrobenzene]+. The dinitrobenzenes form [M + NH4]+ clusters and show evidence of nitroaniline formation and clustering. 1,3,5-Trinitrobenzene gives little indication of clustering or of substitution. The six isomers of trinitrotoluene appear to be stabilized by the methyl group and form clusters up to [M + N3H10]+. Nucleophilic substitution leads to dinitrotoluidines, which also form clusters with ammonium ions.  相似文献   

4.
Lü Jian 《中国化学》2011,29(2):283-287
The effect of metallic ions on the nitrolysis of DAPT [3,7‐diacetyl‐1,3,5,7‐tetraazabicyclo(3.3.1)nonane] and HA (hexamine) was investigated by experimental and theoretical approaches. The combinatorial reagent, M(NO?3)n/Ac2/NH4NO3 (M=Mg2+, Cu2+, Pb2+, Bi3+, Fe3+ and Zr4+), was found to be efficient in the experiment of the nitrolysis of DAPT. A key intermediate during the nitrolysis of DAPT was detected by 1H NMR. The formation mechanism of the intermediate was proposed and analyzed. Some discrepant results for the nitrolysis of DAPT and HA catalyzed by different metallic nitrates were explained based on hard‐soft and acid‐base principle and stabilized energy of ion‐complex. From the latter point of view, some cations with high polarizable ligands, e.g., OSO2CF3?, (CF3SO2)2N?, and (C4F9SO2)2N?, can increase the yields. Two newly designed catalysts, Cu[(CF3SO2)2N]2 and Cu[(C4F9SO2)2N]2, were tested to be highly efficient.  相似文献   

5.
N‐benzimidazol‐2‐yl imidate type 1 reacts with thiourea, carbon disulfide, cyanamide, and hydrazide to give, respectively, [1,2‐a] benzimidazolo‐1,3,5‐triazin‐2‐thione 2 , [1,2‐a] benzimidazolo‐1,3,5‐thiadiazin‐2‐thione 3 , [1,2‐a] benzimidazolo‐1,3,5‐triazin‐2‐amine 4 , and [1,2‐a] benzimidazol‐2‐yl amidrazone 5 with good yields. Structures elucidation of all newly synthesized heterocyclic compounds was based on the data of IR, 1H NMR, 13C NMR, elemental analysis, and MS of some products. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:279–283, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20618  相似文献   

6.
The reaction of N‐phenylimidoyl isoselenocyanates 1 with 2‐amino‐1,3‐thiazoles 10 in acetone proceeded smoothly at room temperature to give 4H‐1,3‐thiazolo[3,2‐a] [1,3,5]triazine‐4‐selones 13 in fair yields (Scheme 2). Under the same conditions, 1 and 2‐amino‐3‐methylpyridine ( 11 ) underwent an addition reaction, followed by a spontaneous oxidation, to yield the 3H‐4λ4‐[1,2,4]selenadiazolo[1′,5′:1,5] [1,2,4]selenadiazolo[2,3‐a]pyridine 14 (Scheme 3). The structure of 14 was established by X‐ray crystallography (Fig. 1). Finally, the reaction of 1‐methyl‐1H‐imidazole ( 12 ) and 1 led to 3‐methyl‐1‐(N‐phenylbenzimidoyl)‐1H‐imidazolium selenocyanates 15 (Scheme 4). In all three cases, an initially formed selenourea derivative is proposed as an intermediate.  相似文献   

7.
The B3LYP/3‐21G* ab initio molecular orbital method from the Gaussian 94 computer program package was applied to study tricyclo[3,3,1,13,7]decane and tricyclo[3,3,1,13,7]decsilane molecules and their halogen derivatives (1,3,5,7‐tetrahalotricyclo[3,3,1,13,7]decane and 1,3,5,7‐tetrahalotricyclo[3,3,1,13,7]decsilane, C10H12X4, and Si10H12X4). The optimized structures of these compounds were obtained. Ionization potentials, HOMO and LUMO energies, energy gaps, heats of formation, atomization energies, and vibration frequencies were calculated. These calculations indicate that these molecules are stable and have Td symmetry. Tricyclo[3,3,1,13,7]decsilane and its halogen derivatives (Si10H12X4) are found to have higher conductivity than that of tricyclo[3,3,1,13,7]decane and its halogen derivatives (C10H12X4). 1,3,5,7‐Tetraflourotricyclo[3,3,1,13,7]decane (C10H12F4) and 1,3,5,7‐tetraflourotricyclo[3,3,1,13,7]decsilane (Si10H12F4) were found to be the easiest compounds to form and the most difficult to dissociate of all 1,3,5,7‐tetrahalotricyclo[3,3,1,13,7]decane and 1,3,5,7‐tetrahalotricyclo[3,3,1,13,7]decsilane compounds, respectively. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 72: 189–198, 1999  相似文献   

8.
Diaminomethylene- and aminomethylthiomethylenehydrazones [2] of cyclic ketones 1–8 readily reacted with ethoxymethylenemalononitrile to give spiro[cycloalkane-1,2′-[1,2′,4′]triazolo[1,5′-c]pyrimidine-8′-carbonitrile] derivatives 12–19 through the electrocyclic reaction of the initially formed condensation products 26 in moderate to high yields. The spiro[cyclopentanetriazolopyrimidine] derivatives underwent ring-opening at the cycloalkane moiety upon heating in solution to give 2-alkyl-5-substituted-[1,2,4]triazolo[1,5-c]pyrimidine-8′-carbonitriles 20–23 . When an alkyl substituent was introduced into the cyclopentane ring, cleavage of the spiro compounds occurred preferentially at the cyclopentane moiety between the spiro carbon and the more branched one. In contrast, the cyclohexane ring, especially of spiro-5-amino-triazolopyrimidines 17 and 18 strongly resisted to ring-opening under similar conditions, but those of 5-methylthiotriazolopyrimidines 14 gave up to 17 percent of cleavage after prolonged heating in hot ethanol. 2-t-Butyl-5-methylthio-2,3-dihydro[1,2,4]triazolo[1,5-c]pyrimidine-8-carbonitrile 25 [R3 = C(CH3)3] was highly susceptible to the cleavage even at room temperature and produced the corresponding 2-unsubstituted triazolopyrimidine 24 with loss of the t-butyl group.  相似文献   

9.
Under Ammonia chemical Ionization conditions the source decompositions of [M + NH4]+ ions formed from epimeric tertiary steroid alchols 14 OHβ, 17OHα or 17 OHβ substituted at position 17 have been studied. They give rise to formation of [M + NH4? H2O]+ dentoed as [MHsH]+, [MsH? H2O]+, [MsH? NH3]+ and [MsH? NH3? H2O]+ ions. Stereochemical effects are observed in the ratios [MsH? H2O]+/[MsH? NH3]+. These effects are significant among metastable ions. In particular, only the [MsH]+ ions produced from trans-diol isomers lose a water molecule. The favoured loss of water can be accounted for by an SN2 mechanism in which the insertion of NH3 gives [MsH]+ with Walden inversion occurring during the ion-molecule reaction between [M + NH4]+ + NH3. The SN1 and SNi pathways have been rejected.  相似文献   

10.
The reactions of nine N‐(pyrido[3′,2′:4,5]thieno[3,2‐d]pyrimidin‐4‐yl)amidines ( 3 ) with hydroxylamine hydrochloride produced new cyclization products. These were formed via ring cleavage of the pyrimidine component followed by a 1,2,4‐oxadiazole‐forming ring closure to give N‐[2‐([1,2,4]oxadiazol‐5‐yl)thieno[2,3‐b]pyridin‐3‐yl]formamide oximes ( 11 ). Reaction of six N‐(pyrido[2′,3′:4,5]furo[3,2‐d]pyrimidin‐4‐yl)amidines ( 12 ) with hydroxylamine hydrochloride gave similar results. Effects of the newly synthesized compounds on pentosidine formation were also evaluated.  相似文献   

11.
The N2 negative ion chemical ionization (NICI) mass spectra of aniline, aminonaphthalenes, aminobiphenyls and aminoanthracenes show an unexpected addition appearing at [M + 11]. This addition is also observed in the N2 positive chemical ionization (PCI) mass spectra. An ion at [M – 15]? is found in the NICI spectra of aminoaromatics such as aniline, 1- and 2-aminonaphthalene and 1- and 2-aminoanthracene. Ion formation was studied using labeled reagents, variation of ion source pressure and temperature and examination of ion chromatograms. These experiments indicate that the [M + 11], [M – 15] and [M + 11] ions result from the ionization of analytes altered by surface-assisted reactions. Experiments with 15N2, [15N] aniline, [2,3,4,5,6-2H5] aniline and [13C6] aniline show that the [M + 11] ion corresponds to [M + N – 3H]. The added nitrogen originates from the N2 buffer gas and the addition occurs with loss of one ring and two amino group hydrogens. Fragmentation patterns in the N2 PCI mass spectrum of aniline suggest that the neutral product of the surface-assisted reaction is 1,4-dicyanobuta-1,3-diene. Experiments with diamino-substituted aromatics show analogous reactions resulting in the formation of [M – 4H] ions for aromatics with ortho-amino groups. Experiments with methylsubstituted aminoaromatics indicate that unsubstituted sites ortho to the amino group facilitate nitrogen addition, and that methyl groups provide additional sites for nitrogen addition.  相似文献   

12.
2,4,6-Triarylpyrylium salts 1 react with the in situ generated anhydrobase of 9,10-dimethylacridinium methosulfate ( 2a ) in the presence of anhydrous sodium acetate in ethanol by a 2,5-[C4+C2] pyrylium ring transformation to give the hitherto unknown 6-aroyl-3,5-diaryl-10′-methylspiro[cyclohexa-2,4-diene-1,9′-9′,10′-dihydro-acridines] 3 . When the pyrylium perchlorate 1a is treated under the same conditions with the N-ethyl, N-allyl or N-benzyl substituted acridinium salts 2b-d a dealkylation of these salts occurs and the N-unsubstituted spiro[cyclohexadiene-dihydroacridine] 4a is formed. The same compounds 4 can also be obtained by transformation of the pyrylium salts 1 with 9-methylacridine ( 7 ) and triefhylamine/acetic acid in ethanol. Structure elucidation is performed by an X-ray crystal structure determination of the spiro[cyclohexadiene-dihydroacridine] 3a . Spectroscopic data of the transformation products and their mode of formation are discussed.  相似文献   

13.
The chemical shifts and coupling constants of [1,2-15N2]pyrazole, 2-(1-[1,2- 15N2]pyrazolyl)-2-[l,3-2H6]propanol, 1-nitro[1,215N2] and 3-nitro[1,2-15N2]pyrazole are reported.  相似文献   

14.
The reactions of N‐([1]benzofuro[3,2‐d]pyrimidin‐4‐yl)formamidines with hydroxylamine hydrochloride gave rearranged cyclization products via ring cleavage of the pyrimidine component accompanied by a ring closure of the 1,2,4‐oxadiazole to give N‐[2‐([1,2,4]oxadiazol‐5‐yl)[1]benzofuran‐3‐yl)formamide oximes. N‐([1]Benzothieno[3,2‐d]pyrimidin‐4‐yl)formamidines and N‐(pyrido[2,3‐d]pyrimidin‐4‐yl)formamidines with hydroxylamine hydrochloride gave similar results.  相似文献   

15.
Reactions of 4-oxo benz[1,3-e]oxazinium perchlorates with 1-R1-3-R2-5-aminopyrazoles lead to the formation of derivatives of pyrazolo[3,4-d]pyrimidine and pyrazolo[1,5-a]1,3,5]triazine series, and with 3-amino-1,2,4-triazole, to [1,2,4]triazolo[1,5-a][1,3,5]triazines.  相似文献   

16.
Oxidation of 1,3,5‐trisubstituted 4,5‐dihydro‐1H‐pyrazoles to the corresponding pyrazoles has been achieved by utilizing tetrabromine‐1,3,5,7‐tetrazatricyclo[3.3.1.13,7]decane complex, Br4‐TATCD, in glacial acetic acid under microwave irradiation and conventional thermal condition at room temperature with excellent yields.  相似文献   

17.
In situ 1H nuclear magnetic resonance spectroscopy was used to investigate the processes that occur during the synthesis of 1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecane (TATU). NMR analysis showed a reaction mixture containing more than one compound. The production of these intermediates and collateral products was rationally supported by a careful 1H NMR monitoring study. We characterized 1,3,5-triazabicyclo[3.2.1]octane (TABO, 4) and 3-(2-aminoethyl)-1,3,5-triazabicyclo[3.2.1]octane (AETABO, 7) by 1H and 13C NMR in D2O solution inside the NMR sample tube, as an intermediate and collateral product of the reaction, respectively. Further, a reaction of 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane (TATD) with 15N-labeled ammonium chloride was carried out. The 15N NMR and GC-MS experiments indicated that 15N was incorporated into TATU, TABO, and urotropine.  相似文献   

18.
We report fundamental studies on the reactivity of the 2‐arsaethynolate anion (AsCO?), a species that has only recently become synthetically accessible. The reaction of AsCO? with the bulky stannylene Ter2Sn (Ter=2,6‐bis[2,4,6‐trimethylphenyl]phenyl) is described, which leads to the unexpected formation of a [Ter3Sn2As2]? cluster compound. On the reaction pathway to this cluster, several intermediates were identified and characterized. After the initial association of AsCO? to Ter2Sn, decarbonylation occurs to give an anion featuring monocoordinate arsenic, [Ter2SnAs]?. Both species are not stable under ambient conditions, and [Ter2SnAs]? rearranges to form [TerSnAsTer]?, an unprecedented anionic mixed Group 14/15 alkene analogue.  相似文献   

19.
N‐Ylide complexes of Ir have been generated by C(sp3)?H activation of α‐pyridinium or α‐imidazolium esters in reactions with [Cp*IrCl2]2 and NaOAc. These reactions are rare examples of C(sp3)?H activation without a covalent directing group, which—even more unusually—occur α to a carbonyl group. For the reaction of the α‐imidazolium ester [ 3 H]Cl, the site selectivity of C?H activation could be controlled by the choice of metal and ligand: with [Cp*IrCl2]2 and NaOAc, C(sp3)?H activation gave the N‐ylide complex 4 ; in contrast, with Ag2O followed by [Cp*IrCl2]2, C(sp2)?H activation gave the N‐heterocyclic carbene complex 5 . DFT calculations revealed that the N‐ylide complex 4 was the kinetic product of an ambiphilic C?H activation. Examination of the computed transition state for the reaction to give 4 indicated that unlike in related reactions, the acetate ligand appears to play the dominant role in C?H bond cleavage.  相似文献   

20.
The configuration of Ni(IV), Fe(IV), Mn(IV) and V(IV) complexes of the type MI2[MIVL2] where MI=Li, Na, K, Rb and Cs and the ligand L is the anion C3H6N3O3−3 of hexahydro-1,3,5-triazine-1,3,5-triol has been obtained by studying the infrared spectra of the complexes in the region 4000-50 cm−1. Vibrational assignments for the observed bands of the complex ions have been made assuming the molecular symmetry D3d. The assignments have been based on the observed isotopic frequency shifts due to the substitutions H/D, 14N/15N, 12C/13C, 58Ni/62Ni and 54Fe/57Fe and on the assignment of the bands in the infrared spectrum of hexahydro-1,3,5-triazine-1,3,5-triol, C3H6N3 (OH)3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号