首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The flash photolysis of azomethane in a quartz reaction vessel produces mainly ethane (>75%) plus smaller quantities of methane, ethylene, and acetylene. The minor products are interpreted quantitatively in terms of methyl radical photolysis at 216 nm to give CH2 and H. This interpretation is substantiated by the dependence of the minor products on flash intensity. The reduction of the ethane yield on adding NO is employed to obtain a rate constant for CH3 + NO as a function of total pressure, based on a value for methyl radical recombination of 4.2 × 10?11 cm3/molec · sec. An RRKM analysis is used to extrapolate the data to give a limiting high-pressure rate constant for CH3 + NO of (1.2 ± 0.1) × 10?11 cm3/molec · sec at 298°K.  相似文献   

2.
Studies on photo-catalytic degradation of benzene using TiO2 photo-catalyst as a suspension in water is reported. Degradation studies have been carried out using 350 nm UV light. Phenol, a photo-catalytic product of benzene, was monitored under varying experimental conditions such as amount of TiO2, concentration of benzene, photolysis time, ambient (air, O2, Ar, N2O and N2O–O2 mixture), etc. The phenol yields in both aerated and O2-purged systems increased with the photolysis time. In contrast to oxygenated systems, the yields of phenol in deoxygenated (viz. Ar-purged and N2O-purged) systems were quite low (~30 μM) and remained steady. H2O2 yields in all these systems were also monitored, and found lower than an order of magnitude as compared to phenol yields for the respective systems. The rate of phenol production in aerated 1 mM benzene solution containing 0.05% TiO2 suspension was evaluated at 12.3 μM min−1 which is lower than the rate obtained in an O2-saturated system (22.4 μM min−1). The low yields of phenol in both Ar- and N2O-purged systems, and also the increasing trends in oxygenated systems, together reveal that, for the phenol formation with an enhanced rate, oxygen is essential. In the present study, it is implied that the photo-generated hole, which is mainly an OH radical, is either freely available in the aqueous phase or migrates to the aqueous phase from the catalyst surface, to react with benzene to produce HO-adduct radical. Later, following reaction with oxygen, the adduct produces phenol. On the other hand, h+ and surface adsorbed OH radical, being trapped/bonded due to rigid association with the catalyst surface, were not able to generate phenol under similar experimental conditions. The mechanism of phenol formation with TiO2 photolysis in an aqueous system is rechecked, on the basis of present results on h+/surface adsorbed OH radical/unbound OH radical scavenging by benzene, collectively with previous reports on various systems.  相似文献   

3.
Photochemical activation of nickel‐azido complex 2 [Ni(N3)(PNP)] (PNHP=2,2′‐di(isopropylphosphino)‐4,4′‐ditolylamine) in neat benzene produces diamagnetic complex 3 [Ni(Ph)(PNPNH)], which is crystallographically characterized. DFT calculations support photoinitiated N2‐loss of the azido complex to generate a rare, transient NiIV nitrido species, which bears significant nitridyl radical character. Subsequent trapping of this nitrido through insertion into the Ni P bond generates a coordinatively unsaturated NiII imidophosphorane PN donor. This species shows unprecedented reactivity toward 1,2‐addition of a C H bond of benzene to form 3 . The structurally characterized chlorido complex 4 [Ni(Cl)(PNPNH)] is generated by reaction of 3 with HCl or by direct photolysis of 2 in chlorobenzene. This is the first report of aromatic C H bond activation by a trapped transient nitrido species of a late transition metal.  相似文献   

4.
Photochemical activation of nickel‐azido complex 2 [Ni(N3)(PNP)] (PNHP=2,2′‐di(isopropylphosphino)‐4,4′‐ditolylamine) in neat benzene produces diamagnetic complex 3 [Ni(Ph)(PNPNH)], which is crystallographically characterized. DFT calculations support photoinitiated N2‐loss of the azido complex to generate a rare, transient NiIV nitrido species, which bears significant nitridyl radical character. Subsequent trapping of this nitrido through insertion into the Ni? P bond generates a coordinatively unsaturated NiII imidophosphorane P?N donor. This species shows unprecedented reactivity toward 1,2‐addition of a C? H bond of benzene to form 3 . The structurally characterized chlorido complex 4 [Ni(Cl)(PNPNH)] is generated by reaction of 3 with HCl or by direct photolysis of 2 in chlorobenzene. This is the first report of aromatic C? H bond activation by a trapped transient nitrido species of a late transition metal.  相似文献   

5.
A new analytical portable system is proposed for the direct determination of benzene vapor in the ambient air and natural gas, using differential absorption spectrometry with the direct Zeeman effect and innovative radiation sources: capillary mercury lamps with different isotopic compositions (196Hg, 198Hg, 202Hg, 204Hg, and natural isotopic mixture). Resonance emission of mercury at a wavelength of 254 nm is used as probing radiation. The differential cross section of benzene absorption in dependence on wavelength is determined by scanning of magnetic field. It is found that the sensitivity of benzene detection is enhanced three times using lamp with the mercury isotope 204Hg in comparison with lamp, filled with the natural isotopic mixture. It is experimentally demonstrated that, when benzene content is measured at the Occupational Exposure Limit (3.2 mg/m3 for benzene) level, the interference from SO2, NO2, O3, H2S and toluene can be neglected if concentration of these gases does not exceed corresponding Occupational Exposure Limits. To exclude the mercury effect, filters that absorb mercury and let benzene pass in the gas duct are proposed. Basing on the results of our study, a portable spectrometer is designed with a multipath cell of 960 cm total path length and detection limit 0.5 mg/m3 at 1 s averaging and 0.1 mg/m3 at 30 s averaging. The applications of the designed spectrometer to measuring the benzene concentration in the atmospheric air from a moving vehicle and in natural gas are exemplified.  相似文献   

6.
The results of the investigation on photooxidative degradation of five phenylenevinylene oligomers are as follows. The sequence of the photodegradation rate in self-sensitized reaction is the same as that in the biacetyl-sensitized reaction and the rate of photooxidative degradation increases upon the incorporation of electron-donating groups and decreases upon the incorporation of electron-accepting groups on the oligomers. The self-sensitized reaction rate of oligomers increases as the solvent changing from benzene to deuterated benzene and decreases with the addition of the singlet oxygen (1O2) scavenger. 1O2 is shown to be the main reactive intermediate in self-sensitized photolysis of phenylenevinylene oligomers, which was directly confirmed by ESR spin trapping experiments.  相似文献   

7.
Excimer laser (ArF) photolysis of diatomic and triatomic hydrides produces hydrogen atoms with translational energies in excess of 15000 cm?1 per atom. Subsequent collisions of these “hot” atoms with CO2 and N2O produces vibrationally excited molecules which can be detected by their characteristic infrared emission.  相似文献   

8.
Photo-induced degradation studies of a series of organonickel complexes of the type (η5-C5H5)(PPh3)Ni(R) (R = CH3, C2H5, C6H5 and C6H4CH3-p) as well as certain deuterated analogs have been undertaken. Photolysis of the methyl compounds in benzene as well as benzene-d6 gives methane as the major gaseous product, the photogenerated methyl group abstracting hydrogen from either the cyclopentadienyl ring, from the solvent, or from another methyl group. The photo-induced dealkylation of the ethyl compound gives both ethylene and ethane, and is explained by β-hydride elimination followed by subsequent reaction of the hydrido intermediate with additional ethyl compound. The photolysis of the phenyl and p-tolyl complexes in benzene solution leads to biaryl formation, both from the coupling of two coordinated aryl groups as well as interactions with the solvent. Triphenylphosphine is a product in all of these photo-decomposition studies.  相似文献   

9.
Fluorescence quenching of 1,4-bis(1H-pyrrol-1-yl)benzene, 1-(1H-pyrrol-2-yl)-1-(1-vinyl-1H-pyrrol-1-yl)benzene, and 1,4-bis(1-vinyl-1H-pyrrol-2-yl)benzene with chloromethanes (methylene chloride, chloroform, and carbon tetrachloride) in solvents with different polarities follows electron-transfer mechanism. The occurrence of an electron-transfer step is confirmed by formation of short-lived pyrrolylbenzene radical cations. An exception is quenching of fluorescence of 1,4-bis(1-vinyl-1H-pyrrol-2-yl)benzene in n-hexane in the presence of CCl4 and CHCl3 and in pure CCl4. In this case, neutral 1,4-bis(1-vinyl-1H-pyrrol-2-yl)benzene·-Cl radical is formed via recombination of 1,4-bis(1-vinyl-1H-pyrrol-2-yl)benzene radical cation and chloride anion. A relation was found between the nature of the short-lived species detected by laser photolysis and stable product obtained by stationary photolysis.  相似文献   

10.
本工作采用改进的溶胶-凝胶法和浸渍法制备了TiO2掺杂稀土离子La3+的La/TiO2光催化剂,运用XRD、N2吸附脱附、紫外可见漫反射光谱(DRS)、表面光电压谱(SPS)等手段进行表征,同时利用原位红外技术考察了La/TiO2样品光催化降解乙烯、丙酮、苯的气-固相光催化氧化反应,对其光催化降解有机污染物的过程进行了研究。结果表明,TiO2经适量La3+掺杂后,锐钛矿晶型的含量增加,晶粒度减小,比表面积增大,禁带宽度增加,表面光电压信号增强,光生电子-空穴对有效分离;La/TiO2样品对乙烯、丙酮、苯的光催化性能与纯TiO2相比均有不同程度的改善,乙烯可以被光催化氧化完全矿化生成CO2,而丙酮被光催化氧化可能生成中间产物丙酸,苯被光催化氧化可能生成中间产物苯酚和苯醌。  相似文献   

11.
Abstract— The photochemistry, photophysics, and photosensitization (Type I and II) of indomethacin (IN) (N-[p-chlorobenzoyl]-5-methoxy-2-methylindole-3-acetic acid) has been studied in a variety of solvents using NMR, high performance liquid chromatography-mass spectroscopy, transient spectroscopy, electron paramagnetic resonance in conjunction with the spin trapping technique, and the direct detection of singlet molecular oxygen (l O2) luminescence. Photodecomposition of IN (λex > 330 nm) in degassed or air-saturated benzene proceeds rapidly to yield a major (2; N-[p-chlorobenzoyl]-5-methoxy-2-methyl-3-methylene-indoline) and a minor (3; N-[p-chlorobenzoyl]-5-methoxy-2, 3-dimethyl-indole) decarboxylated product and a minor indoline (5; 1-en-5-methoxy-2-methyl-3-methylene-in-doline), which is formed by loss of the p-chlorobenzoyl moiety. In air-saturated solvents two minor oxidized products 4 (N-[p-chlorobenzoyl]-5-methoxy-2-methylindol-3-aldehyde) and 6 (5-methoxy-2-methyl-indole-3-aldehyde) are also formed. When photolysis was carried out in 18O2-saturated benzene, the oxidized products 4 and 6 contained 18O, indicating that oxidation was mediated by dissolved oxygen in the solvent. In more polar solvents such as acetonitrile or ethanol, photodecomposition is extremely slow and inefficient. Phosphorescence of IN at 77 K shows strong solvent dependence and its emission is greatly reduced as polarity of solvent is increased. Flash excitation of IN in degassed ethanol or acetonitrile produces no transients. A weak transient is observed at 375 nm in degassed benzene, which is not quenched by oxygen. Irradiation of IN (λex > 325 nm) in N2-gassed C6H6 in the presence of 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) results in the trapping of two carbon-centered radicals by DMPO. One adduct was identified as DMPO/.COC6H4-p-CI, while the other was probably derived from a radical formed during IN decarboxylation. In air-saturated benzene, (hydro) peroxyl and alkoxyl radical adducts of DMPO are observed. A very weak luminescence signal from 1O2 at 1268 nm is observed initially upon irradiation (λex= 325 nm) of IN in air-saturated benzene or chloroform. The intensity of this 1O2 signal increases as irradiation is continued suggesting that the enhancement in 1O2 yield is due to photoproduct(s). Accordingly, when 2 and 3 were tested directly, 2 was found to be a much better sensitizer of 1O2 than IN. In air-saturated ethanol or acetonitrile no IN 1O2 luminescence is detected even on continuous irradiation. The inability of IN to cause phototoxicity may be related to its photo stability in polar solvents, coupled with the low yield of active oxygen species (1O2, O2?-) upon UV irradiation.  相似文献   

12.
The influence of free, diffusion-control quenchers of triplets (naphthalene, biphenyl, 2,5-dimethyl-2,4-hexadiene) on the photolysis of poly(vinyl phenyl ketone) in benzene solution has been investigated. The Stern-Volmer plots for quenching of main-chain scission were linear, and the quenching constants were independent of the macroviscosity of the solutions. Copolymers of vinyl phenyl ketone with 1-vinylnaphthalene and 2-vinylnaphthalene containing as much as 10% (by weight) vinylnaphthalene were prepared. The photolysis of the copolymers was compared with the photolysis of poly(vinyl phenyl ketone) in the presence of free naphthalene. It was found that the quenching efficiency of found naphthalene units was about 21 times higher. The possibility of migration of the absorbed energy along the polymer chain is discussed. The relation between average-number molecular weight M n and intrinsic viscosity [η] has been determined osmometrically. For unfractionated poly(vinyl phenyl ketone) in benzene at 30°C, the relation [η] = 2.82 × 10?5 M n0.84 has been found.  相似文献   

13.
The pressure dependence of the photodissociation quantum yield of acetone has been determined in different buffer gases at 308 nm. Results by Stern-Volmer analyses are in accordance with a suggested photolysis mechanism. Luminescence spectra, lifetimes and transition dipole moments have been determined. The energy transfer process by O2 to give O2(1Δg) is of minor importance in the case of the singlet excited state of acetone, while it is the dominant deactivation process for the triplet state.  相似文献   

14.
Photo-induced degradation of CH3Mn(CO)5 in pentane solution results in the formation of Mn2(CO)10, methane and carbon monoxide. Both CH3D and CH4 are formed when CH3Mn(CO)5 is photolyzed in C6D6. Photolysis of C6H5CH2Mn(CO)5 in pentane solution produces Mn2(CO)10, toluene and bibenzyl. Analogous photodegradation of C6H5Mn(CO)5 in pentane solution yields Mn2(CO)10, benzene and carbon monoxide, but not biphenyl. The thermally unstable complex C2H5Mn(CO)5 was studied by photolyzing it in solution at ?40°C. GC analysis indicates that both ethylene and ethane are formed, and that the mole ratio of these products is dependent on the initial concentration of C2H5Mn(CO)5. These results are consistent with a β-hydrogen elimination mechanism for this reaction. Photolysis of CpMo(CO)3CH2C6H5 in pentane solution produces [CpMo(CO)3]2 and toluene, whereas photolysis of CpW(CO)3CH2C6H5 affords [CpW(CO)3]2, CpW(CO)23-benzyl), toluene, and a small amount (2%) of bibenzyl. When CpM(CO)23-benzyl) (M = Mo, W) complexes are subjected to photolysis under similar conditions, the only identifiable product is toluene. CpW(CO)3C6H5 degrades photochemically in pentane solution to form [CpW(CO)3)2 and benzene, together with a small amount (6%) of biphenyl.  相似文献   

15.
The kinetics of the reactions of acetic, benzoic, formic, oxalic, malic, tartaric, trifluoroacetic, and hydrochloric acids with diphenylcarbonyl oxide Ph2COO was studied. The carbonyl oxide Ph2COO was generated by flash photolysis of diphenyldiazomethane Ph2CN2 in solutions of acetonitrile and benzene at 295 K. The apparent rate constants of the reaction range from 4.6·108 for (COOH)2 in MeCN to 7.5·109 L mol–1 s–1 for acetic acid in a benzene solution. The reaction mechanism was proposed, according to which at the first stage the carbonyl oxide is reversibly solvated by the solvent. Then the solvated carbonyl oxide reacts with the acid molecule by the mechanism of insertion at the O—H bond.  相似文献   

16.
Acetaldehyde and chloral were copolymerized using triethyl aluminum catalyst. The copolymer (ACC) obtained with equimolar monomer feed is not alternating in structure as it was once thought to be; it is comprised of two fractions differing in MW and composition. ACC has good thermal stability which is further improved by endcapping. Radiolysis in vacuo caused depolymerization with a G(M) value (number of monomers produced per 100 eV) of about 4000 to 80% completion. The G(S) value for chain scission is 1.9. These processes are effectively inhibited by benzoquinone. Oxygen markedly increases G(M) to ca. 18,000 and > 97% completion. Addition of tetrabutyl ammonium salt or tetramethyl urea has no effect on the depolymerization, whereas the addition of di-t-butyl-p-cresol causes an induction period after which normal unzipping ensues. Even UV photolysis of ACC in the presence of oxygen produces monomer with a quantum yield of 1.7, but very little photolysis occurs in the absence of oxygen. Gamma radiolysis sensitized by (C6H5)2IPF6 has G(M) value of 32,700. These results are very similar to the radiolysis and photolysis of the homopolymer of monochloroacetaldehyde and reinforce the mechanisms proposed for them. The E-beam sensitivity of ACC is about 3 × 10?6 C cm?2.  相似文献   

17.
Photoinduced hydroxylation of neat deaerated benzene to phenol occurred under visible‐light irradiation of 2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone (DDQ), which acts as a super photooxidant in the presence of water. Photocatalytic solvent‐free hydroxylation of benzene derivatives with electron‐withdrawing substituents such as benzonitrile, nitrobenzene, and trifluoromethylbenzene used as neat solvents has been achieved for the first time by using DDQ as a super photooxidant to yield the corresponding phenol derivatives and 2,3‐dichloro‐5,6‐dicyanohydroquinone (DDQH2) in the presence of water under deaerated conditions. In the presence of dioxygen and tert‐butyl nitrite, the photocatalytic hydroxylation of neat benzene occurred with DDQ as a photocatalyst to produce phenol. The photocatalytic reactions are initiated by oxidation of benzene derivatives with the singlet and triplet excited states of DDQ to form the corresponding radical cations, which associate with benzene derivatives to produce the dimer radical cations, which were detected by the femto‐ and nanosecond laser flash photolysis measurements to clarify the photocatalytic reaction mechanisms. Radical cations of benzene derivatives react with water to yield the OH‐adduct radicals. On the other hand, DDQ . ? produced by the photoinduced electron transfer from benzene derivatives reacts with the OH‐adduct radicals to yield the corresponding phenol derivatives and DDQH2. DDQ is recovered by the reaction of DDQH2 with tert‐butyl nitrite when DDQ acts as a photocatalyst for the hydroxylation of benzene derivatives by dioxygen.  相似文献   

18.
Faujasite type zeolite membranes were synthesized on porous ceramic alumina supports by using direct (in situ) and secondary (seeded) growth methods. In the secondary growth method a seed layer of ZSM-2 nanocrystals (prepared according to a report by Schoeman et al. J. Colloid Interface Sci. 1995, 170, 449–456) was deposited on the surface of the support before the hydrothermal growth. For both in situ and secondary growth, the mixture composition was 4.17 Na2O:1.0 Al2O3:10 TEA (triethanol ammonium):1.87 SiO2:460 H2O. X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron microprobe analysis (EPMA), indicate well intergrown 5–30 μm thick FAU films with Si/Al ∼1–1.5. The separation of saturated/unsaturated hydrocarbon mixtures is demonstrated over a range of temperatures (40–160°C). The mixtures examined (and the corresponding equimolar mixture separation factors) are benzene/cyclohexane (160), benzene/n-hexane (144), toluene/n-heptane (45), propylene/propane (6.2), and ethylene/methane (8.4). In all cases, the membranes are unsaturated hydrocarbon permselective. With equimolar feed mixtures (5 kPa/5 kPa benzene/cyclohexane) and in the temperature range 65–160°C, the membranes exhibit separation factor of 20–160 with the benzene flux in the range 10−4–10−3 mol m−2 s−1. Decreasing the total feed partial pressure (0.31/0.31 kPa benzene/cyclohexane) reduces both separation factor (12) and benzene flux. Similar trend is observed when the benzene/cyclohexane ratio in the feed mixture (0.5/9.5 kPa benzene/cyclohexane) is reduced. A sorption diffusion model based on the Stefan–Maxwell formulation has also been employed to show that the benzene/cyclohexane separation can mainly be attributed to differences of their adsorption properties.  相似文献   

19.
In DMSO/water (4:1), photolysis of the dihydroxy-Sn (IV)-mesoporphyrin dimethyl ester (SnP)/methyl viologen (MV2+)/ethylene diamine tetraacetic acid (EDTA) ternary system produces methyl viologen cation radical with a quantum yield of 0.67, much higher than that of systems with other metal complexes of mesoporphyrin dimethyl ester. Neither EDTA nor MV2+ quenches the stationary fluorescence of SnP, implying that the reaction does not take place at the singlet state. With flash photolysis we obtain the T-T absorption spectrum of SnP (λmax 440 nm). By following the decay of this absorption, the triplet life time of SnP is estimated to be 41 μs. The life time is related to the concentration of either MV2+ or EDTA. Good linear relationships are obtained by plotting τ0τ vs. the concentration of MV2+ or EDTA (Stern-Volmer plot), from which we determine the quenching constants: kq(MV2+) =5.5 × 107 mol?1, s?1; kq (EDTA) =2.7 × 107 mol?1, s?1. The data suggests that upon photolysis of the above ternary system, both oxidative quenching and reductive quenching of the triplet state of the sensitizer are occurring. From the measured phosphorescence spectrum (λmax 704 nm) and the ground state redox, potentials (Ered1/2?-0.84V, Eox1/2?+1.43 V, vs. Ag/AgCl, KCl (sat.)), we obtain the redox potential of triplet SnP to be E(P+/P*T)?-0.33 V, E(P*T+/P?)?+0.92 V. Matching this data with the redox potential of MV2+ and EDTA, we establish the fact that during the photolysis of the SnP/MV2+/EDTA ternary system, both oxidative and reductive quenching are thermodynamically favorable processes. This is also the reason why the SnP sensitized reaction is much more efficient relative to other mesoporphyrin derivatives.  相似文献   

20.
Hydrogenation of acetylene in the presence of a large excess of ethylene has been investigated on the Pd-Ag catalyst under 60°C and a space velocity of 2,000 h–1. It was found that an enhancement in the performance of Pd-Ag catalyst can be obtained by pretreatment with N2O. It is suggested that added N2O on the catalyst before use not only augments the sites associated with ethylene production from acetylene but also depletes the sites responsible for direct ethane formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号