首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chiral Building Blocks for Syntheses by Kolbe Electrolysis of Enantiomerically Pure β-Hydroxybutyric-Acid Derivatives. (R)- and (S)-Methyl-, and (R)-Trifluoromethyl-γ-butyrolactones, and -δ-valerolactones The coupling of chiral, non-racemic R* groups by Kolbe electrolysis of carboxylic acids R*COOH is used to prepare compounds with a 1.4- and 1.5-distance of the functional groups. The suitably protected β-hydroxycarboxylic acids (R)- or (S)-3-hydroxybutyric acid, (R)-4,4,4-trifluoro-3-hydroxybutyric acid (as acetates; see 1 – 6 ), and (S)-malic acid (as (2S,5S)-2-(tert-butyl)-5-oxo-1,3-dioxolan-4-acetic acid; see 7 ) are decarboxylatively dimerized or ‘codimerized’ with 2-methylpropanoic acid, with 4-(formylamino)butyric acid, and with monomethyl malonate and succinate. The products formed are derivatives of (R,R)-1,1,1,6,6,6-hexafluoro-2,5-hexanediol (see 8 ), of (R)-5,5,5-trifluoro-4-hydroxypentanoic acid (see 9,10 ), of (R)- and (S)-5-hydroxyhexanoic acid (see 11 ) and its trifluoro analogue (see 12, 13 ), of (S)-2-hydroxy- and (S,S)-2,5-dihydroxyadipic acid (see 23, 20 ), of (S)-2-hydroxy-4-methylpentanoic acid (‘OH-leucine’, see 21 ), and of (S)-2-hydroxy-6-aminohexanoic acid (‘OH-lysine’, see 22 ). Some of these products are further converted to CH3- or CF3-substituted γ- and δ-lactones of (R)- or (S)-configuration ( 14 , 16 – 19 ), or to an enantiomerically pure derivative of (R)-1-hydroxy-2-oxocyclopentane-1-carboxylic acid (see 24 ). Possible uses of these new chiral building blocks for the synthesis of natural products and their CF3 analogues (brefeldin, sulcatol, zearalenone) are discussed. The olfactory properties of (R)- and (S)-δ-caprolactone ( 18 ) are compared with those of (R)-6,6,6-trifluoro-δ-caprolactone ( 19 ).  相似文献   

2.
(E)-5-Demethyl-4-oxo-β-ionone ( 2 ), (E)-4-oxo-β-ionone ( 3 ), (E)-4-oxo-β-irone ( 4 ), and the five-membered ring analogs 36 – 41 were synthesized by a novel, convergent route starting from 2-methylfuran ( 1 ). A recently discovered, intramolecular reaction of 2-(diazoacyl)furans, catalyzed by dirhodium tetraacetate, leading to dienediones served as key step, thereby testing its utility in natural-product synthesis for the first time.  相似文献   

3.
A concise synthesis of α‐benzylidene‐γ‐methyl‐γ‐butyrolactones 5a – g from substituted benzaldehydes is described. Compounds 1a – g on reaction with phosphorane 2 , provide the pentenoates 3a – g , which can be hydrolyzed to the acids 4a – g . The latter are cyclized to the corresponding butyrolactones 5a – g in excellent yields. The pentenoates 3a – g , on acid catalyzed cyclization, also provide 5a – g in very high yields.  相似文献   

4.
We report on the synthesis of new and previously described β-peptides ( 1 – 6 ), consisting of up to twelve β2,2- or β3,3-geminally disubstituted β-amino acids which do not fit into any of the secondary structural patterns of β-peptides, hitherto disclosed. The required 2,2- and 3,3-dimethyl derivatives of 3-aminopropanoic acid are readily obtained from 3-methylbut-2-enoic acid and ammonia (Scheme 1) and from Boc-protected methyl 3-aminopropanoate by enolate methylation (Scheme 2). Protected (Boc for solution-, Fmoc for solid-phase syntheses) 1-(aminomethyl)cycloalkanecarboxylic-acid derivatives (with cyclopropane, cyclobutane, cyclopentane, and cyclohexane rings) are obtained from 1-cyanocycloalkanecarboxylates and the corresponding dihaloalkanes (Scheme 3). Fully 13C- and 15N-labeled 3-amino-2,2-dimethylpropanoic-acid derivatives were prepared from the corresponding labeled precursors (see asterixed formula numbers and Scheme 4). Coupling of these amino acids was achieved by methods which we had previously employed for other β-peptide syntheses (intermediates 18 – 23 ). Crystal structures of Boc-protected geminally disubstituted amino acids ( 16a – d ) and of the corresponding tripeptide ( 23a ), as well as NMR and IR spectra of an isotopically labeled β-hexapeptide ( 2a* ) are presented (Figs. 1 – 4) and discussed. The tripeptide structure contains a ten-membered H-bonded ring which is proposed to be a turn-forming motif for β-peptides (Fig. 2).  相似文献   

5.
The title compounds were prepared from valine‐derived N‐acylated oxazolidin‐2‐ones, 1 – 3, 7, 9 , by highly diastereoselective (≥ 90%) Mannich reaction (→ 4 – 6 ; Scheme 1) or aldol addition (→ 8 and 10 ; Scheme 2) of the corresponding Ti‐ or B‐enolates as the key step. The superiority of the ‘5,5‐diphenyl‐4‐isopropyl‐1,3‐oxazolidin‐2‐one’ (DIOZ) was demonstrated, once more, in these reactions and in subsequent transformations leading to various t‐Bu‐, Boc‐, Fmoc‐, and Cbz‐protected β2‐homoamino acid derivatives 11 – 23 (Schemes 3–6). The use of ω‐bromo‐acyl‐oxazolidinones 1 – 3 as starting materials turned out to open access to a variety of enantiomerically pure trifunctional and cyclic carboxylic‐acid derivatives.  相似文献   

6.
A series of new base-protected and 5′-O-(4-monomethoxytrityl)- or 5′-O-(4,4′-dimethoxytrityl)-substituted 3′-(2-cyanoethyl diisopropylphosphoramidites) and 3′-[2-(4-nitrophenyl)ethyl diisopropylphosphoramidites] 52 – 66 and 67 – 82 , respectively, are prepared as potential building blocks for oligonucleotide synthesis (see Scheme). Thus, 3′,5′-di-O-acyl- and N 2,3′-O,5′-O-triacyl-2′-deoxyguanosines can easily be converted into the corresponding O6-alkyl derivatives 6 , 8 , 10 , 12 , 14 , and 16 by a Mitsunobu reaction using the appropriate alcohol. Mild hydrolysis removes the acyl groups from the sugar moiety (→ 9 , 11 , 13 , 15 , and 19 (via 18 ), resp.) which can then be tritylated (→ 38 – 42 ) and phosphitylated (→ 57 – 61 ) in the usual manner. N 2-[2-(4-nitrophenyl)ethoxycarbonyl]-substituted and N 2-[2-(4-nitrophenyl)ethoxycarbonyl]-O6-[2-(4-nitrophenyl)ethyl]-substituted 2′-deoxyguanosines 5 and 7 , respectively, are synthesized as new starting materials for tritylation (→ 28 , 35 , and 37 ) and phosphitylation (→ 54 , 56 , 70 , and 78 ). Various O4-alkylthymidines (see 20 – 24 ) are also converted to their 5′-O-dimethoxytrityl derivatives (see 43 – 47) and the corresponding phosphoramidites (see 62 – 66 and 79 – 82 ).  相似文献   

7.
The transformation of 36 bis(homoallylic) alcohols VII to alkenones IX and X via β-cleavage of their potassium alkoxides VIIa in HMPA has been investigated (cf. Scheme 2). These studies have established an order of β-cleavage for 2-propenyl, 1-methyl-2propenyl, 2-methyl-2-propenyl, 1,1-dimethyl-2propenyl, and benzyl groups in alkoxides 49a – 56a and have allowed a comparison between the β-cleavege reaction and the oxy-Cope rearrangement in alkoxides 74a – 83a . As illustrative syntheti applications, a two-step preparatio of propenyl ketones 15 – 42 from carboxylic esters is described, together with syntheses of ar-turmerone ( 48 ), α-damascone ((E)- 71 ), β-damascone ((E)- 109 ), and β-damascenone ((E)- 111 ).  相似文献   

8.
Three title compounds 4a—4c have been synthesized by the cyclodehydration of 1’-benzylidine-4’-(3β-substituted-5α-cholestane-6-yl)thiosemicarbazones 2a—2c with thioglycolic acid followed by the treatment with cold conc. H2SO4 in dioxane. The compounds 2a—2c were prepared by condensation of 3β-substituted-5α-cholestan- 6-one-thiosemicarbazones 1a—1c with benzaldehyde. These thiosemicarbazones 1a—1c were obtained by the reaction of corresponding 3β-substituted-5α-cholestan-6-ones with thiosemicarbazide in the presence of few drops of conc. HCl in methanol. The structures of the products have been established on the basis of their elemental, analytical and spectral data.  相似文献   

9.
Katmusi Kotera 《Tetrahedron》1961,12(4):248-261
Hydrogenation of -anhydrodihydrocaranine (V) or anhydrocaranine (VII) with Adams catalyst in acetic acid or the Hauptmann reduction of -dihydrocaranone (XX) yielded (—)γ-lycorane (XVII). Catalytic reduction of β-anhydrodihydrocaranine (IX) with palladium-carbon in ethanol gave (+)γ-lycorane (XVIII), while with Adams catalyst in acetic acid it afforded (+)δ-lycorane (XIX) along with (—)β-lycorane (III). Reduction of anhydrocaranine in ethanol gave (±)γ-lycorane which was also obtained by hydrogenation of anhydrolycorine (X). Based on these findings, the configurational structures of -, β-, γ- and δ-lycorane were established and the configuration of dihydrolycorine was confirmed.  相似文献   

10.
Condensation of the tetrahydropyranyl ether of the α-hydroxyalkyl-thioamides with 3-bromo-4-hydroxy-2-pentanones yields DL -2-(α-hydroxyalkyl)-4-methyl-5-(β-hydroxyethyl)-thiazoles. By oxidation with chromic anhydride 2-hydroxymethyl-4-methyl-5-(β-acetoxyethyl)-thiazole yields the corresponding 2-formyl derivative. The latter compound reacted with GRIGNARD complexes gives the homologous DL -2-(α-hydroxyalkyl)-4-methyl-5-(β-hydroxyethyl)-thiazoles. This is a general method for the synthesis of the thiazole part of the «active aldehydes». 2-Acetyl-4-methyl-5-(β-hydroxyethyl)-thiazole is also obtained by chromic oxidation of the suitable methylthiazol-2-yl-carbinol. The condensation of the thioamides obtained from the α-ethoxycarbonyl-nitriles with 3-bromo-5-acetoxy-2-pentanone results in the DL -2-(α-ethoxycarbonyl-alkyl)-4-methyl-5-(β-acetoxyethyl)-thiazoles. The α-hydroxyl function is introduced into the 2-(α-ethoxycarbonyl-alkyl) group by chlorination with sulfuryl chloride and replacement of the introduced chlorine by acetate. The latter compounds are the esters of the thiazole part of the «active α-oxo-carboxylic acids» (e.g. active pyruvate, etc.). The reaction of 2-(α-hydroxyalkyl)-4-methyl-5-(β-hydroxyethyl)-thiazoles and 2-(α-ethoxycarbonyl-α-acetoxy-alkyl)-4-methyl-5-(β-acetoxyethyl)-thiazoles, respectively, with alkyl, alkenyl and aralkyl haloids, or with 2-methyl-4-amino-5-bromomethyl-pyrimidine hydrobromide results in the quaternary thiazolium compounds belonging to the group of the active aldehydes, active α-oxo-carboxylic acids, etc. According to this method 2-hydroxymethyl-thiamine bromide hydro-bromide has been synthesized, which can be considered as the pyrophosphate-free «active formal-dehyde». The 2-α-hydrogen atom in 2-(α-hydroxyalkyl)-thiazolium compounds cannot be replaced by deuterium under conditions similar to those used for the H → D exchange in thiamine. The main peaks in the mass spectra of 2-(α-hydroxyalkyl) substituted thiazoles and thiazolium quaternary salts are listed.  相似文献   

11.
By heating with iron powder at 120–150° some γ-bromo-α, β-unsaturated carboxylic methyl esters, and, less smothly, the corresponding acids, were lactonized to Δ7alpha;-butenolides with elimination of methyl bromide. The following conversions have thus been made: methyl γ-bromocrotonate ( 1c ) and the corresponding acid ( 1d ) to Δα-butenolide ( 8a ), methyl γ-bromotiglate ( 3c ) and the corresponding acid ( 3d ) to α-methyl-Δα-butenolide ( 8b ), a mixture of methyl trans- and cis-γ-bromosenecioate ( 7c and 7e ) and a mixture of the corresponding acids ( 7d and 7f ) to β-methyl-Δα-butenolide ( 8c ). The procedure did not work with methyl trans-γ-bromo-Δα-pentenoate ( 5c ) nor with its acid ( 5d ). Most of the γ-bromo-α, β-unsaturated carboxylic esters ( 1c, 7c, 7e and 5c ) are available by direct N-bromosuccinimide bromination of the α, β-unsaturated esters 1a, 7a and 5a ; methyl γ-bromotiglate ( 3c ) is obtained from both methyl tiglate ( 3a ) and methyl angelate ( 4a ), but has to be separated from a structural isomer. The γ-bromo-α, β-unsaturated esters are shown by NMR. to have the indicated configurations which are independent of the configuration of the α, β-unsaturated esters used; the bromination always leads to the more stable configuration, usually the one with the bromine-carrying carbon anti to the carboxylic ester group; an exception is methyl γ-bromo-senecioate, for which the two isomers (cis, 7e , and trans, 7d ) have about the same stability. The N-bromosuccinimide bromination of the α,β-unsaturated carboxylic acids 1b , 3b , 4b , 5b and 7b is shown to give results entirely analogous to those with the corresponding esters. In this way γ-bromocrotonic acid ( 1 d ), γ-bromotiglic acid ( 3 d ), trans- and cis-γ-bromosenecioic acid ( 7d and 7f ) as well as trans-γ-bromo-Δα-pentenoic acid ( 5d ) have been prepared. Iron powder seems to catalyze the lactonization by facilitating both the elimination of methyl bromide (or, less smoothly, hydrogen bromide) and the rotation about the double bond. α-Methyl-Δα-butenolide ( 8b ) was converted to 1-benzyl-( 9a ), 1-cyclohexyl-( 9b ), and 1-(4′-picoly1)-3-methyl-Δα-pyrrolin-2-one ( 9 c ) by heating at 180° with benzylamine, cyclohexylamine, and 4-picolylamine. The butenolide 8b showed cytostatic and even cytocidal activity; in preliminary tests, no carcinogenicity was observed. Both 8b and 9c exhibited little toxicity.  相似文献   

12.
Thermolysis of [Cp*Ru(PPh2(CH2)PPh2)BH2(L2)] 1 (Cp*=η5‐C5Me5; L=C7H4NS2), with terminal alkynes led to the formation of η4‐σ,π‐borataallyl complexes [Cp*Ru(μ‐H)B{R‐C=CH2}(L)2] ( 2 a – c ) and η2‐vinylborane complexes [Cp*Ru(R‐C=CH2)BH(L)2] ( 3 a – c ) ( 2 a , 3 a : R=Ph; 2 b , 3 b : R=COOCH3; 2 c , 3 c : R=p‐CH3‐C6H4; L=C7H4NS2) through hydroboration reaction. Ruthenium and the HBCC unit of the vinylborane moiety in 2 a – c are linked by a unique η4‐interaction. Conversions of 1 into 3 a – c proceed through the formation of intermediates 2 a – c . Furthermore, in an attempt to expand the library of these novel complexes, chemistry of σ‐borane complex [Cp*RuCO(μ‐H)BH2L] 4 (L=C7H4NS2) was investigated with both internal and terminal alkynes. Interestingly, under photolytic conditions, 4 reacts with methyl propiolate to generate the η4‐σ,π‐borataallyl complexes [Cp*Ru(μ‐H)BH{R‐C=CH2}(L)] 5 and [Cp*Ru(μ‐H)BH{HC=CH‐R}(L)] 6 (R=COOCH3; L=C7H4NS2) by Markovnikov and anti‐Markovnikov hydroboration. In an extension, photolysis of 4 in the presence of dimethyl acetylenedicarboxylate yielded η4‐σ,π‐borataallyl complex [Cp*Ru(μ‐H)BH{R‐C=CH‐R}(L)] 7 (R=COOCH3; L=C7H4NS2). An agostic interaction was also found to be present in 2 a – c and 5 – 7 , which is rare among the borataallyl complexes. All the new compounds have been characterized in solution by IR, 1H, 11B, 13C NMR spectroscopy, mass spectrometry and the structural types were unequivocally established by crystallographic analysis of 2 b , 3 a – c and 5 – 7 . DFT calculations were performed to evaluate possible bonding and electronic structures of the new compounds.  相似文献   

13.
In a search for inhibitors of platelet aggregation, a number of α-methylidene-γ-butyrolactones 5 and 6 bearing flavone or xanthone moieties, respectively, were synthesized and evaluated for their antiplatelet activity against thrombin(Thr)-, arachidonic-acid(AA)-, collagen(Col)?, and platelet-activating-factor(PAF)-induced aggregation in washed rabbit platelets. These compounds were synthesized from 7-hydroxyflavone ( 1 ) or 3-hydroxyxanthone ( 2 ) via O-alkylation (→ 3 and 4 , resp.) and Reformatsky-type condensation (Scheme). Most of the flavone-containing α-methylidene-γ-butyrolactones 5a – d showed potent antiplatelet effects on AA- and Col-induced aggregation, while xanthone derivatives 6c – e were found to have the same pharmacological profile than aspirin in which only AA-induced aggregation was inhibited (Table 1). However, 6c – e were approximately three to ten times more potent than aspirin (Table 2). For the vasorelaxing effects, 5a was the only compound which exhibited significant inhibitory activity on the high-K+ medium, Ca2+-induced vasoconstriction (Table3). Both 5a and 6a , with an aliphatic Me substituent at C(γ) of the lactone, were active against norepinephrine-induced phasic and tonic constrictions while their γ-aryl-substituted counterparts 5b – f and 6b – f were inactive.  相似文献   

14.
5-(α-Fluorovinyl)tryptamines 4a, 4b and 5-(α-fluorovinyl)-3-(N-methyl-1′,2′,5′,6′-tetrahydropyridin-3′- and -4′-yl) indoles 5a, 5b were synthesized using 5-(α-fluorovinyl)indole ( 7 ). The target compounds are bioisosteres of 5-carboxyamido substituted tryptamines and their tetrahydropyridyl analogs.  相似文献   

15.
A new synthesis of 2‐phenylpyrano[3,2‐b]phenothiazin‐4(6H)‐one derivatives was reported. First 2,10‐diacetyl‐3‐hydroxyphenothiazine ( 2 ) was converted into their benzoyloxy esters ( 3a – 3j ) using different aromatic carboxylic acids in the presence of phosphorous oxychloride in pyridine. Benzoyloxy esters were converted into their 1,3‐diones ( 4a – 4j ) by using dry KOH in pyridine via Baker‐Venkataraman transformation reaction. The 1,3‐diones thus obtained were cyclised to pyranophenothiazines ( 5a – 5j ) by refluxing in an acetic acid/HCl mixture.  相似文献   

16.
A direct and short route to the synthesis of 4-aryloxymethyl-δ3 -chromenes and 3-(β-aryloxy)-ethylbenzofurans is described. Hydration of I,4-diaryloxy-2-butynes with mercuric oxide and sulfuric acid affords, instead of a ketone, the cyclization product of the ketone. In three of the diaryloxy-butynes studied, the corresponding aryloxyethylbenzofurans are formed. In no instance could the ketone be isolated from the hydration reaction.  相似文献   

17.
α-Phenyl-4-nitrobenzenemethanol ( 3 ) reacted with 1 M sodium hydroxide to yield 4, 4′-dibenzoyl-azoybenzene ( 5 ) (51%), 4-hydroxy-4′-benzoylazobenzene ( 6 ) and benzoic acid (12% each), and smaller amounts of 4-aminobenzophenone and 4-nitrobenzophenone. Both α-phenyl-2-nitrobenzenemethanol ( 9 ) and 3, 5-dimethyl-4-nitrobenzenemethanol ( 10a ) did not react with 1 M sodium hydroxide, presumably due to steric hindrance. α-(p-Nitrophenyl)-4-pyridinemethanol ( 14 ) and its N-oxide 11 with 1 M sodium hydroxide yielded 4,4′-diaroylazoxybenzenes 15a and 12a , respectively, 4,4′-diaroylazobenzenes 15b and 12b , respectively, as well as 4-hydroxy-4′-aroylazobenzenes 16 and 13 , respectively. The relative reaction rates were 11 > 14 > 3 . Studies with 11 showed that the nitro group is involved in the redox reaction in preference to the N-oxide group.  相似文献   

18.
Three η4‐(C=C–C=O) coordination cobalt(I) complexes 1 – 3 were synthesized by the reactions of cinnamaldehyde, p‐fluorocinnamaldehyde, and p‐chlorocinnamaldehyde with CoMe(PMe3)4. Complex 4 as η2‐(C=C) coordination was prepared by the reaction of chalcone with Co(PMe3)4. The structures of complexes 1 – 4 were confirmed by single‐crystal X‐ray diffraction. Although the reactions didn't undergo C–H bond activation and decarbonylation, the formation of complexes 1 – 4 deepens our understanding of the reactions between α,β‐unsaturated aldehyde or ketone with low‐valent central cobalt atom.  相似文献   

19.
Stereoselective Reductive Dimerisation of α-Cyano-β-(4-pyridyl)acrylic Acid Derivatives Catalytic hydrogenation of the α-substituted β-(4-pyridyl)acrylonitriles 3 and 4 (see Scheme 3) yields via stereoselective reductive dimerization the substituted cyclo-pentene derivatives 7 and 8 (see Scheme 4 and 5) instead of the expected dihydro-products 5 and 6 . The mechanism of this reaction is discussed. The structure and relative configuration of 10 have been established by X-ray single crystal analysis.  相似文献   

20.
The reduction of 4-aroyl-3-hydroxy-2(5H)-furanons 1a-c was investigated using different reducing agents. Sodium borohydride reacts with type 1 compounds by loss of water to yield 4-(arylmethylene)-2,3(4H,5H)-furandiones 2a-c . Platinum or charcoal supported by pallodium chloride transforms 1a to 4-benzyl-3-hydroxy-2(5H)-furanone ( 3). Compounds 2a and 2b react with o-phenylenediamine to give 3-(E-(1′-hydroxymethyl-2′-aryl)ethenyl]-2-quinoxalinones 4a and 4b . The lactone 3 under the same conditions splits out formaldehyde and forms 3-(2′-phenylethyl)-2-quinoxalinone ( 6 ). The structure assignments of the novel compounds are based on elemental analysis and nmr as well as ir spectroscopic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号