首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
1-(Alkoixycarbonyl)heptalene-2-carboxylic acids as well as 2-(alkoxycarbonyl)heptalene-1-carboxylic acids react with the iminium salt formed from N,N-dimethylformamide (DMF) and oxalyl chloride, in the presence of an alcohol, to yield the corresponding cyclic ‘ortho’ -anhydrides (ψ-esters; cf. Schemes 2,3,6, and 8). When the alkoxy moiety of the acids and the alcohols is different, then diastereoisomeric ‘ortho’ -anhydrides are formed due to the non-planarity of the heptalene skeleton. The approach of the alcohol from the β-side is strongly favored (cf. Scheme 5 and Table 1). This effect can be attributed to the bent topology of the heptalene skeleton which sterically hinders the approach of the nucleophile from the α-side of the postulated intermediates, i.e. the charged O-alkylated anhydrides of type 19 (cf. Scheme 6). Whereas the ‘ortho’-anhydrides with four substituents in the ‘peri’ -positions of the heptalene skeleton are configurationally stable up to 100°, the ‘ortho’ -anhydrides with only three ‘peri’ -substituents slowly epimerize at 100° (cf. Scheme 7) due to the thermally induced inversion of the configuration of the heptalene skeleton.  相似文献   

2.
The dehydrogenation reaction of a mixture of heptalene‐1,2‐ and heptalene‐4,5‐dimethanols 4a and 4b with basic MnO2 in AcOEt at room temperature led to the formation of the corresponding heptaleno[1,2‐c]furan‐1‐one 6a and heptaleno[1,2‐c]furan‐3‐one 7a (Scheme 2). Both products can be isolated by chromatography on silica gel. The methylenation of the furan‐3‐one 7a with 1 mol‐equiv. of Tebbe's reagent at ?25 to ?30° afforded the 2‐isopropenyl‐5‐methylheptalene‐1‐methanol 9a , instead of the expected 3,6‐dimethylheptaleno[1,2‐c]furan 8 (Scheme 3). Also, the treatment of 7a with Takai's reagent did not lead to the formation of 8 . On standing in solution at room temperature, or more rapidly on heating at 60°, heptalene 9a undergoes a reversible double‐bond shift (DBS) to 9b with an equilibrium ratio of 1 : 1.  相似文献   

3.
A new concept for molecular switches, based on thermal or photochemical double-bond shifts (DBS) in [4n]annulenes such as heptalenes or cyclooctatetraenes, is introduced (cf. Scheme 2). Several heptalene-1,2- and -4,5-dicarboxylates (cf. Scheme 4) with (E)-styryl and Ph groups at C(5) and C(1), or C(4) and C(2), respectively, have been investigated. Several X-ray crystal-structure analyses (cf. Figs. 1–5) showed that the (E)-styryl group occupies in the crystals an almost perfect s-trans-conformation with respect to the C?C bond of the (E)-styryl moiety and the adjacent C?C bond of the heptalene core. Supplementary 1H-NOE measurements showed that the s-trans-conformations are also adopted in solution (cf. Schemes 6 and 9). Therefore, the DBS process in heptalenes (cf. Schemes 5 and 8) is always accompanied by a 180° torsion of the (E)-styryl group with respect to its adjacent C?C bond of the heptalene core. The UV/VIS spectra of the heptalene-1,2- and -4,5-dicarboxylates illustrated that it can indeed be differentiated between an ‘off-state’, which possesses no ‘through-conjugation’ of the π-donor substituent and the corresponding MeOCO group and an ‘on-state’ where this ‘through-conjugation’ is realized. The ‘through-conjugation’, i.e., conjugative interaction via the involved s-cis-butadiene substructure of the heptalene skeleton, is indicated by a strong enhancement of the intensities of the heptalene absorption bands I and II (cf. Tables 3–6). The most impressive examples are the heptalene-dicarboxylates 11a , representing the off-state, and 11b which stands for the on-state (cf. Fig.8).  相似文献   

4.
The reduction of heptalene diester 1 with diisobutylaluminium hydride (DIBAH) in THF gave a mixture of heptalene‐1,2‐dimethanol 2a and its double‐bond‐shift (DBS) isomer 2b (Scheme 3). Both products can be isolated by column chromatography on silica gel. The subsequent chlorination of 2a or 2b with PCl5 in CH2Cl2 led to a mixture of 1,2‐bis(chloromethyl)heptalene 3a and its DBS isomer 3b . After a prolonged chromatographic separation, both products 3a and 3b were obtained in pure form. They crystallized smoothly from hexane/Et2O 7 : 1 at low temperature, and their structures were determined by X‐ray crystal‐structure analysis (Figs. 1 and 2). The nucleophilic exchange of the Cl substituents of 3a or 3b by diphenylphosphino groups was easily achieved with excess of (diphenylphospino)lithium (=lithium diphenylphosphanide) in THF at 0° (Scheme 4). However, the purification of 4a / 4b was very difficult since these bis‐phosphines decomposed on column chromatography on silica gel and were converted mostly by oxidation by air to bis(phosphine oxides) 5a and 5b . Both 5a and 5b were also obtained in pure form by reaction of 3a or 3b with (diphenylphosphinyl)lithium (=lithium oxidodiphenylphospanide) in THF, followed by column chromatography on silica gel with Et2O. Carboxaldehydes 7a and 7b were synthesized by a disproportionation reaction of the dimethanol mixture 2a / 2b with catalytic amounts of TsOH. The subsequent decarbonylation of both carboxaldehydes with tris(triphenylphosphine)rhodium(1+) chloride yielded heptalene 8 in a quantitative yield. The reaction of a thermal‐equilibrium mixture 3a / 3b with the borane adduct of (diphenylphosphino)lithium in THF at 0° gave 6a and 6b in yields of 5 and 15%, respectively (Scheme 4). However, heating 6a or 6b in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) in toluene, generated both bis‐phosphine 4a and its DBS isomer 4b which could not be separated. The attempt at a conversion of 3a or 3b into bis‐phosphines 4a or 4b by treatment with t‐BuLi and Ph2PCl also failed completely. Thus, we returned to investigate the antipodes of the dimethanols 2a, 2b , and of 8 that can be separated on an HPLC Chiralcel‐OD column. The CD spectra of optically pure (M)‐ and (P)‐configurated heptalenes 2a, 2b , and 8 were measured (Figs. 4, 5, and 9).  相似文献   

5.
The synthesis of π-substituted heptalenecarboxylates or -dicarboxylates, starting with the easily available dimethyl 9-isopropyl-1, 6-dimethylheptalene-4, 5-dicarboxylate ( 2b ), are described. Treatment of 2b with t-BuOK and C2Cl6 at ?78° leads to the chemoselective introduction of a Cl substituent in Me-C(1) (see 5b in Scheme 1). Formation of the corresponding triphenylphosphonium salt 7b via the iodide 6b (Scheme 2) allowed a Wittig reaction with cinnamaldehyde in the two-phase system CH2Cl2/2N NaOH. Transformation of the 4, 5-dicar-boxylate of 2b into the corresponding pseudo-ester 10b allowed the selective reduction of the carbonyl function at C(4) with DIBAH to yield the corresponding 4-carbaldehyde 11b (Scheme 3). Wittig reaction of 11b with (benzyl) triphenylphosphonium bromide led to the introduction of the 4-phenylbuta-1, 3-dienyl substituent at C(4). The combination of both Wittig reactions led to the synthesis of the 1, 4-bis(4-phenylbuta-1, 3-dienyl)-substituted heptalene-5-carboxylate (all-E)- 17b (Scheme 5). In a similar manner, by applying a Horner-Wadsworth-Emmons reaction, followed by the Wittig reaction, the donor-acceptor substituted heptalene-5-carboxylate (E;E)- 22b was synthesized (Scheme7). Most of these new heptalenes are in solution, at room temperature, in thermal equilibrium with their double-bond shifted (DBS) isomers. In the case of (all-E)- 17b and (E;E)- 22b , irradiation of the thermal equilibrium mixture with light of λ -(439 ± 10) nm led to a strong preponderance ( > 90%) of the DBS isomers 17a and (E;E)- 22a , respectively (Schemes 6 and 7). Heating of the photo-mixtures at 40° re-established quickly the thermal equilibrium mixtures. Heptalenes-carboxylates (all-E)- 17a and (E;E)- 22a which represent the off-state of a 1,4-conjugative switch (CS) system show typical heptalene UV/VIS spectra with a bathochromically shifted heptalene band III and comparably weak heptalene bands II and I which appear only as shoulders (Figs. 4 and 5). In contrast, the DBS isomers (all-E)- 17b and (all-E)- 22b , equivalent to the on-state of a 1,4-CS system, exhibit extremely intense heptalene bands I and, possibly, II which appear as a broad absorption band at 440 and 445 nm, respectively, thus indicating that the CSs (all-E)- 17a ?(all-E)- 17b and (E;E)- 22a ?(E;E)- 22b are perfectly working.  相似文献   

6.
A number of azulenes 1 , in particular those with π‐substituents at C(6) such as phenyl, 3,5‐dimethylphenyl, and 4‐biphenyl, have been reacted with 3 mol‐equiv. of dimethyl acetylenedicarboxylate (ADM) in MeCN at 110° (cf. Scheme 1). Main products had been, in all cases, the corresponding heptalene‐4,5‐dicarboxylates 2 . However, a whole number of side products, mainly rearranged (1+2)‐adducts with two molecules of ADM, in amounts of 0.2–9% were also isolated and characterized (cf. Scheme 2). The 2a,8a‐dihydro‐3,4‐ethenoazulene‐1,2‐dicarboxylates 14 , formed by energetically favorable ring closure from the solvent‐stabilized zwitterions 15 , resulting from bond heterolysis in the primary cycloadducts 12 (cf. Scheme 3), have been mechanistically identified as the pivotal intermediates responsible for the formation of all side product (cf. Schemes 5, 9, 12, and 13). Deuterium‐labeling experiments were in agreement with the proposed mechanisms, indicating that sigmatropic [1,5s]‐H shifts in 14 (cf. Scheme 6) as well as isoconjugate [1,4s]‐H shifts in resonance‐stabilized zwitterions of type 21 (cf. Scheme 9) are the crucial steps for side‐product formation. It is postulated that a concluding antarafacial 8e‐dyotropic rearrangement is responsible for the appearance of the 2,4a‐dihydrophenanthrene‐tetracarboxylates of type trans‐ 6 (cf. Scheme 9) in the reaction mixtures, which further rearrange thermally by a not fully understood mechanism into the isomeric tetracarboxylates 7 (cf. Schemes 10 and 11). Most surprising is the presence of a small amount (0.3–1%) of the azulene‐4,5,7,8‐tetracarboxylate 9 in the reaction mixture of azulene 1a and ADM. It is proposed that the formation of 9 is the result of a [1,5s]‐C shift in the spiro‐linked intermediates 24 , which, after prototropic shift and take‐up of a third molecule of ADM, disintegrate by a retro‐Diels‐Alder reaction into 9 and the phthalic diesters 30 (cf. Scheme 12). The UV/VIS spectra of the π‐substituted heptalene‐4,5‐dicarboxylates 2d – 2f and their double‐bond shifted (DBS) forms 2d – 2f (cf. Table 4 and Figs. 912) exhibit in comparison with the heptalene‐dicarboxylates 2a and 2′a , carrying a t‐Bu group at C(8), only marginal differences, which are mainly found in the relative intensity and position of heptalene bands II and III .  相似文献   

7.
The dehydrogenation reaction of the heptalene-4,5-dimethanols 4a and 4d , which do not undergo the double-bond-shift (DBS) process at ambient temperature, with basic MnO2 in CH2Cl2 at room temperature, leads to the formation of the corresponding heptaleno[1,2-c]furans 6a and 6d , respectively, as well as to the corresponding heptaleno[1,2-c]furan-3-ones 7a and 7d , respectively (cf. Scheme 2 and 8). The formation of both product types necessarily involves a DBS process (cf. Scheme 7). The dehydrogenation reaction of the DBS isomer of 4a , i.e., 5a , with MnO2 in CH2Cl2 at room temperature results, in addition to 6a and 7a , in the formation of the heptaleno[1,2-c]-furan-1-one 8a and, in small amounts, of the heptalene-4,5-dicarbaldehyde 9a (cf. Scheme 3). The benzo[a]heptalene-6,7-dimethanol 4c with a fixed position of the C?C bonds of the heptalene skeleton, on dehydrogenation with MnO2 in CH2Cl2, gives only the corresponding furanone 11b (Scheme 4). By [2H2]-labelling of the methanol function at C(7), it could be shown that the furanone formation takes place at the stage of the corresponding lactol [3-2H2]- 15b (cf. Scheme 6). Heptalene-1,2-dimethanols 4c and 4e , which are, at room temperature, in thermal equilibrium with their corresponding DBS forms 5c and 5e , respectively, are dehydrogenated by MnO2 in CH2Cl2 to give the corresponding heptaleno[1,2-c]furans 6c and 6e as well as the heptaleno[1,2-c]furan-3-ones 7c and 7e and, again, in small amounts, the heptaleno[1,2-c]furan-1-ones 8c and 8e , respectively (cf. Scheme 8). Therefore, it seems that the heptalene-1,2-dimethanols are responsible for the formation of the furan-1-ones (cf. Scheme 7). The methylenation of the furan-3-ones 7a and 7e with Tebbe's reagent leads to the formation of the 3-methyl-substituted heptaleno[1,2-c]furans 23a and 23e , respectively (cf. Scheme 9). The heptaleno[1,2-c]furans 6a, 6d , and 23a can be resolved into their antipodes on a Chiralcel OD column. The (P)-configuration is assigned to the heptaleno[1,2-c]furans showing a negative Cotton effect at ca. 320 nm in the CD spectrum in hexane (cf. Figs. 3–5 as well as Table 7). The (P)-configuration of (–)- 6a is correlated with the established (P)-configuration of the dimethanol (–)- 5a via dehydrogenation with MnO2. The degree of twisting of the heptalene skeleton of 6 and 23 is determined by the Me-substitution pattern (cf. Table 9). The larger the heptalene gauche torsion angles are, the more hypsochromically shifted is the heptalene absorption band above 300 nm (cf. Table 7 and 8, as well as Figs. 6–9).  相似文献   

8.
The thermal 4 : 1 equilibrium mixture of 1,3,5,6- and 1,3,5,10-tetramethylheptalene ( 13a and 13b , resp.) has been prepared, starting from the thermal equilibrium mixture of dimethyl 6,8,10-trimethylheptalene-1,2- and -4,5-dicarboxylate ( 6a and 6b , resp.; cf. Scheme 5). These heptalenes undergo double-bond shifts (DBS) even at ambient temperature. Treatment of the mixture 13a / 13b 4 : 1 with [Cr(CO)3(NH3)3] in boiling 1,2-dimethoxyethane resulted in the formation of all four possible mononuclear Cr(CO)3 complexes 19a – 19d of 13a and 13b , as well as two binuclear Cr(CO)3 complexes 20a and 20b , respectively, in a total yield of 87% (cf. Scheme 7). The mixture of complexes was separated by column chromatography, followed by preparative HPLC (cf. Fig. 2). The structures of all complexes were established by X-ray crystal-structure analyses (complex 19b and 20b ; cf. Figs. 6 – 8) and extensive 1H-NMR measurements (cf. Table 3). In 20b , the two Cr(CO)3 groups are linked in a `syn'-mode to the highly twisted heptalene π-skeleton. The correspondence of the 1H-NMR data of 20a with that of 20b indicates that the two Cr(CO)3 groups in 20a also have a `syn'-arrangement. The thermal behavior of the mononuclear complexes 19a – 19d has been studied at 85° in hexafluorobenzene (HFB). At this temperature, all four complexes undergo rearrangement to the same thermal equilibrium mixture (cf. Table 8). The rates for the thermal equilibration of each complex have been determined by 1H-NMR measurements (cf. Figs. 912) and analyzed by seven different kinetic schemes (Chapt. 2). The equilibration rates are in agreement with two different haptotropic rearrangements that take place, namely intra- and inter-ring shifts of the Cr(CO)3 group, whereby both rearrangements are accompanied by DBS of the heptalene π-skeleton (cf. Scheme 9). All individual kinetic steps possess similar ΔG values in the range of 29 – 31 kcal⋅mol−1 (cf. Table 8). The occurrence of inter-ring haptotropic migrations of Cr(CO)3 groups has already been established for anellated aromatic systems (cf. Scheme 10); however, it is the first time that these rearrangements have been unequivocally demonstrated for Cr(CO)3 complexes of non-planar bicyclic [4n]annulenes, such as heptalenes. The mechanism of migration may be similar to that proposed for aromatic systems (cf. Schemes 10 and 11).  相似文献   

9.
On treatment with 6 mol-equiv. of lithiomethyl phenyl sulfone at −78° in THF, dimethyl 5,6,8,10-tetramethylheptalene-1,2-dicarboxylate ( 1′b ) gives, after raising the temperature to −10° and addition of 6 mol-equiv. of BuLi, followed by further warming to ambient temperature, the corresponding 3-(phenylsulfonyl)benzo[a]heptalene-2,4-diol 2b in yields up to 65% (cf. Scheme 6 and Table 2), in contrast to its double-bond-shifted (DBS) isomer 1b which gave 2b in a yield of only 6% [1]. The bisanion [ 9 ]2− of the cyclopenta[a]heptalen-1(1H)-one 9 (cf. Fig. 1), carrying a (phenylsulfonyl)methyl substituent at C(11b), seems to be a key intermediate on the reaction path to 2b , because 9 is transformed in high yield into 2b in the presence of 6 mol-equiv. of BuLi in the temperature range of −10° to room temperature (cf. Scheme 7). Heptalene-dicarboxylate 1′b was also transformed into benzo[a]heptalene-2,4-diols 2c – g by a number of lithiated methyl X-phenyl sulfones and BuLi (cf. Scheme 9 and Table 3).  相似文献   

10.
It is shown that 4,8‐diphenylazulene ( 1 ) can be easily prepared from azulene by two consecutive phenylation reactions with PhLi, followed by dehydrogenation with chloranil. Similarly, a Me group can subsequently be introduced with MeLi at C(6) of 1 (Scheme 2). This methylation led not only to the expected main product, azulene 2 , but also to small amounts of product 3 , the structure of which has been determined by X‐ray crystal‐structure analysis (cf. Fig. 1). As expected, the latter product reacts with chloranil at 40° in Et2O to give 2 in quantitative yields. Vilsmeier formylation of 1 and 2 led to the formation of the corresponding azulene‐1‐carbaldehydes 4 and 5 . Reduction of 4 and 5 with NaBH4/BF3 ? OEt2 in diglyme/Et2O 1 : 1 and BF3 ? OEt2, gave the 1‐methylazulenes 6 and 7 , respectively. In the same way was azulene 9 available from 6 via Vilsmeier formylation, followed by reduction of azulene‐1‐carbaldehyde 8 (Scheme 3). The thermal reactions of azulenes 1, 6 , and 7 with excess dimethyl acetylenedicarboxylate (ADM) in MeCN at 100° during 72 h afforded the corresponding heptalene‐4,5‐dicarboxylates 11, 12 , and 13 , respectively (Scheme 4). On the other hand, the highly substituted azulene 9 gave hardly any heptalene‐4,5‐dicarboxylate.  相似文献   

11.
Azulene-1-carbaldehydes which have Me substituents at C(3) and C(8) and no substituent at C(6) react with excess dimethyl acetylenedicarboxylate (ADM) in decalin at 200° to yield exclusively the Diels-Alder adduct at the seven-membered ring (cf. Scheme 3). The corresponding 1-carboxylates behave similarly (Scheme 4). Azulene-1-carbaldehydes which possess no Me substituent at C(8) (e.g. 11 , 12 in Scheme 2) gave no defined products when heated with ADM in decalin. On the other hand, Me substitutents at C(2) may also assist the thermal addition of ADM at the seven-membered ring of azulene-1-carbaldehydes (Scheme 6). However, in these cases the primary tricyclic adducts react with a second molecule of ADM to yield corresponding tetracyclic compounds. The new tricyclic aldehydes 16 and 17 which were obtained in up to 50% yield (Scheme 3) could quantitatively be decarbonylated with [RhCl(PPh3)3] in toluene at 140° to yield a thermally equilibrated mixture of four tricycles (Scheme 8). It was found that the thermal isomerization of these tricycles occur at temperatures as low as 0° and that at temperatures > 40° the thermal equilibrium between the four tricycles is rapidly established via [1,5]-C shifts. The establishment of the equilibrium makes the existence of two further tricycles necessary (cf. Scheme 8). However, in the temperature range of up to 85° these two further tricycles could not be detected by 1H-NMR. When heated in the presence of excess ADM in decalin at 180°, the ‘missing’ tricyclic forms could be evidenced by their tetracyclic trapping products ‘anti’- 45 and ‘anti’- 48 , respectively (Scheme 9).  相似文献   

12.
To study the effect of double-bond shifts (DBS) in different type of heptalenes linked to extended π-systems, several di-π-substituted heptalenes were synthesized. 6-[(E)-Styryl]heptalene-dicarboxylate 4 was smoothly converted to 1-(chloromethyl)heptalene-dicarboxylate 5 by treatment with t-BuOK and C2Cl6 in THF at −78°. The one-pot reaction of 5 and P(OEt)3 in the presence of NaI, followed by Wittig-Horner reaction, afforded the 1,6-di-π-substituted heptalene 6 . The reaction of 6-[(1E,3E)-4-phenylbuta-1,3-dienyl]heptalenes 7 or 15 with t-BuOK and benzaldehyde in THF led to the formation of the 1,6-di-π-substituted heptalenes 13 or 16 , together with transesterification products 14 or 17 . The transformation of the MeOCO group at C(4) of 6-[(E)-styryl]heptalene-dicarboxylate 4 to a phenylbuta-1,3-dienyl substituent afforded the 4,6-di-π-substituted heptalene 21a , which is in thermal equilibrium with its DBS isomer 21b in solution. Oxidation of heptalene 22 with SeO2 in dioxane gave carbaldehyde 23 , which was then subjected to a Wittig reaction to give the 6,9-di-π-substituted heptalene-dicarboxylate 24 .  相似文献   

13.
3‐(Phenylsulfonyl)benzo[a]heptalene‐2,4‐diols 1 can be desulfonylated with an excess of LiAlH4/MeLi?LiBr in boiling THF in good yields (Scheme 6). When the reaction is run with LiAlH4/MeLi, mainly the 3,3′‐disulfides 6 of the corresponding 2,4‐dihydroxybenzo[a]heptalene‐3‐thiols are formed after workup (Scheme 7). However, the best yields of desulfonylated products are obtained when the 2,4‐dimethoxy‐substituted benzo[a]heptalenes 2 are reduced with an excess of LiAlH4/TiCl4 at ?78→20° in THF (Scheme 10). Attempts to substitute the PhSO2 group of 2 with freshly prepared MeONa in boiling THF led to a highly selective ether cleavage of the 4‐MeO group, rather than to desulfonylation (Scheme 13).  相似文献   

14.
Dimethyl heptalene‐4,5‐dicarboxylates
  • 1 The locants of heptalene itself are maintained throughout the whole work. See footnote 4 in [1] for reasoning.
  • undergo preferentially a Michael addition reaction at C(3) with α‐lithiated alkyl phenyl sulfones at temperatures below ?50°, leading to corresponding cis‐configured 3,4‐dihydroheptalene‐4,5‐dicarboxylates (cf. Table 1, Schemes 3 and 4). The corresponding heptalenofuran‐1‐one‐type pseudoesters of dimethyl heptalene‐4,5‐dicarboxylates (Scheme 5) react with [(phenylsulfonyl)methyl]lithium almost exclusively at C(1) of the furanone group (Scheme 6). In contrast to this expected behavior, the uptake of 1‐[phenylsulfonyl)ethyl]lithium occurs at C(5) of the heptalenofuran‐1‐ones as long as they carry a Me group at C(11) (Schemes 6 and 7). The 1,4‐ as well as the 1,6‐addition products eliminate, on treatment with MeONa/MeOH in THF, benzenesulfinate, thus leading to 3‐ and 4‐alkylated dimethyl heptalene‐4,5‐dicarboxylates, respectively (Schemes 813). The configuration of the addition reaction of the nucleophiles to the inherently chiral heptalenes is discussed in detail (cf. Schemes 1419) on the basis of a number of X‐ray crystal‐structure determinations as well as by studies of the temperature‐dependence of the 1H‐NMR spectra of the addition products.  相似文献   

    15.
    The thermal reaction of 7-isopropyl-1,3,4-trimethylazulene (3-methylguaiazulene; 2 ) with excess dimethyl acetylenedicarboxylate (ADM) in decalin at 200° leads to the formation of the corresponding heptalene- ( 5a/5b and 6a/6b ; cf. Scheme 3) and azulene-1,2-dicarboxylates ( 7 and 8 , respectively). Together with small amounts of a corresponding tetracyclic compound (‘anti’- 13 ) these compounds are obtained via rearrangement (→ 5a/5b and 6a/6b ), retro-Diels-Alder reaction (→ 7 and 8 ), and Diels-Alder reaction with ADM (→ ‘anti’- 13 ) from the two primary tricyclic intermediates ( 14 and 15 ; cf. Scheme 5) which are formed by site-selective addition of ADM to the five-membered ring of 2 . In a competing Diels-Alder reaction, ADM is also added to the seven-membered ring of 2 , leading to the formation of the tricyclic compounds 9 and 10 and of the Diels-Alder adducts ‘anti’- 11 and ‘anti’- 12 , respectively of 9 and of a third tricyclic intermediate 16 which is at 200° in thermal equilibrium with 9 and 10 (cf. Scheme 6). The heptalenedicarboxylates 5a and 5b as well as 6a and 6b are interconverting slowly already at ambient temperature (Scheme 4). The thermal reaction of guaiazulene ( 1 ) with excess ADM in decalin at 190° leads alongside with the known heptalene- ( 3a ) and azulene-1,2-dicarboxylates ( 4 ; cf. Schemes 2 and 7) to the formation of six tetracyclic compounds ‘anti’- 17 to ‘anti’- 21 as well as ‘syn’- 19 and small amounts of a 4:1 mixture of the tricyclic tetracarboxylates 22 and 23 . The structure of the tetracyclic compounds can be traced back by a retro-Diels-Alder reaction to the corresponding structures of tricyclic compounds ( 24--29 ; cf. Scheme 8) which are thermally interconverting by [1,5]-C shifts at 190°. The tricyclic tetracarboxylates 22 and 23 , which are slowly equilibrating already at ambient temperature, are formed by thermal addition of ADM to the seven-membered ring of dimethyl 5-isopropyl-3,8-dimethylazulene-1,2-dicarboxylate ( 7 ; cf. Scheme 10). Azulene 7 which is electronically deactivated by the two MeOCO groups at C(1) and C(2) shows no more thermal reactivity in the presence of ADM at the five-membered ring (cf. Scheme 11). The tricyclic tetracarboxylates 22 and 23 react with excess ADM at 200° in a slow Diels-Alder reaction to form the tetracyclic hexacarboxylates 32 , ‘anti’- 33 , and ‘anti’- 34 (cf. Schemes 10–12 as well as Scheme 13). A structural correlation of the tri- and tetracyclic compounds is only feasible if thermal equilibration via [1,5]-C shifts between all six possible tricyclic tetracarboxylates ( 22, 23 , and 35–38 ; cf. Scheme 13) is assumed. The tetracyclic hexacarboxylates 32 , ‘anti’- 33 , and ‘anti’- 34 seem to arise from the most strained tricyclic intermediates ( 36–38 ) by the Diels-Alder reaction with ADM.  相似文献   

    16.
    1,3,4,6,8-Pentamethylazulene ( 9 ), when heated at 100° in supercritical CO2 at 150 bar in the presence of 4 equiv. of dimethyl acetylenedicarboxylate (ADM), led to the formation of 16% of a 1:1 mixture of dimethyl 3,5,6,8,10-pentamethylheptalene-1,2-dicarboxylate 12a ) and its double-bond-shifted isomer 12b as well as 4% of the corresponding azulene-1,2-dicarboxylate 13 (Scheme 4). The formation of the [1 + 2] adduct 11 (cf. Scheme 2) was not observed. Similarly, benz[a]azulene ( 25 ) yielded in supercritical CO2 (150°/170 bar) in the presence of 4 equiv. of ADM dimethyl benzo[d]heptalene-6,7-dicarboxylate ( 29 ; 30%) and dimethyl benzo[a]cyclopent[cd]azulene-1,2-dicarboxylate ( 28 ; 22%; Scheme 5). The reaction of 5,9-diphenylbenz[a]azulene ( 26 ) and ADM in supercritical CO2 (100°/150 bar) gave the corresponding benzo[d]heptalene-6,7-dicarboxylate 31 (22%) and dimethyl 5,9-diphenyl-4b,10-etheno-10H-benz[a]azulene-11,12-dicarboxylate( 30 ; 25%; Scheme 5).  相似文献   

    17.
    The benzo[a]heptalene formation from 4‐[(R‐sulfonyl)acetyl]heptalene‐5‐carboxylates 15 and 5‐[(R‐sulfonyl)acetyl]heptalene‐4‐carboxylates 16 (R=Ph or morpholino) in the presence of R′SO2CH2Li and BuLi has been investigated (Scheme 6). Only the sulfonyl moiety linked to the C?O group at C(4) of the heptalene skeleton is found at C(3) of the formed benzo[a]heptalene‐2,4‐diols 3 in accordance with the general mechanism of their formation (Scheme 3). Intermediates that might rearrange to corresponding 2‐sulfonylbenzo[a]heptalene‐1,3‐diols lose HO? under the reaction conditions to yield the corresponding cyclopenta[d]heptalenones of type 11 (Schemes 6 and 7). However, the presence of an additional Me group at C(α) of the lithioalkyl sulfones suppresses the loss of HO?, and 4‐methyl‐2‐sulfonylbenzo[a]heptalene‐1,3‐diols of type 4c have been isolated and characterized for the first time (Schemes 8 and 10). A number of X‐ray crystal‐structure analyses of starting materials and of the new benzo[a]heptalenes have been performed. Finally, benzo[a]heptalene 4c has been transformed into its 1,2,3‐trimethoxy derivative 23 , a benzo[a]heptalene with the colchicinoid substitution pattern at ring A (Scheme 11).  相似文献   

    18.
    It is shown that azulenes react with dimethyl acetylenedicarboxylate (ADM) in solvents such as toluene, dioxan, or MeCN in the presence of 2 mol-% [RuH2(PPh3)4] already at temperatures as low as 100° and lead to the formation of the corresponding heptalene-1,2-dicarboxylates in excellent yields (Tables 1 and 2). The Ru-catalyzed reaction of ADM with 1-(tert-butyl)-4,6,8-trimethylazulene ( 31 ) takes place even at room temperature, yielding the primary tricyclic addition product 32 and its thermal retro-Diels-Alder product dimethyl 4,6,8-trimethylazulene-1,2-dicarboxylate ( 21 ; Scheme 4). At 100° in MeCN, 32 yields 90% of 21 and only 10% of the corresponding heptalene. These observations demonstrate that [RuH2(PPh3)4] catalyzes the first step of the thermal formation of heptalenes from azulenes and ADM which occurs in apolar solvents such as tetralin or decalin at temperatures > 180° (cf. Scheme 1).  相似文献   

    19.
    Benzo[a]heptalene has been synthesized by two different approaches. The first one follows a pathway to hexahydrobenzo[a]heptalenone 19a that has been already described by Wenkert and Kim(Scheme). Indeed, 19a was obtained in a mixture with its double-bond-shifted isomer 19b . Reduction of this mixture to the corresponding secondary alcohols 26a/26b and elimination of H2O lead to a mixture of the tetrahydrobenzo[a]heptalenes 23a-d (Scheme7 and 8). Reaction of 23a-d with 2 equiv. of triphenylmethylium tetrafluoroborate in boiling CHCl3, followed by treatment with Me3N in CH2Cl2, generated directly 2 , unfortunately in a mixture with Ph3CH that could not be separated from 2 (Scheme 10 and 11). The second approach via dimethyl benzo[a]heptalene-6,7-dicarboxylate ( 30 ) (Scheme 12) that was gradually transformed into the corresponding carbaldehydes 37 and 43 (Scheme 14) both of which, on treatment with the Wilkinson catalyst [RhCl(PPh3)3] at 130° in toluene, smoothly decarbonylated, finally gave pure 2 as an unstable orange, viscous oil. UV/VIS, NMR, and mass spectra of 2 are discussed in detail (cf. Chapt.3).  相似文献   

    20.
    The addition of dienes, diazomethane, and carbenoids to the manno- and ribo-configurated thio-γ-O-lactones 1 and 2 was investigated. Thus, 1 (Scheme 1) reacted with 2,3-dimethylbutadiene (→ 4 , 73%), cyclopentadiene (→ 5a/b 1:1, 70%), cyclohexa- 1,3-diene (→ 9a/b 2:3, 92%), and the electron-rich butadiene 6 (→ 7a/b 3:1, 82%). Wheras 5a/b was separated by flash chromatography, 7a/b was desilylated leading to the thiapyranone 8 . Selective hydrolysis of one isopropylidene group of 9a/b and flash chromatography gave 10a and 10b . The structures of the adducts were elucidated by X-ray analysis ( 4 ), by NOE experiments ( 4 , 5a , 5b , 7a/b , 10a , and 10b ), and on the basis of a homoallylic coupling ( 7a/b ). The additions occurred selectively from the ‘exo’ -side of 1 . Only a weak preference for the ‘endo’-adducts was observed. Hydrogenation of 9a/b with Raney-Ni (EtOH, room temperature) gave the thiabicyclo [2.2.2]octane 11 . Under harsher conditions (dioxane, 110°), 9a/b was reduced to the cyclohexyl ß-D C-glycoside 12 which was deprotected to 13 . X-Ray analysis of 13 proved that the desulfuration occurred with inversion of the anomeric configuration. The regioselective addition of the dihydropyridine 14 to 1 (Scheme 2) and the methanolysis of the crude adduct 15 gave the lactams 16a (32%) and 16b (38%). Desilylation of 15 with Bu4NF · 3H2O, however, gave the unsaturated piperidinedione 17 (92%) which was deprotected to the tetrol 18 (65%). Similarly, 2 was transformed via 19 (62%) into the triol 20 (74%). The cycloaddition of 1 with CH2N2 (Scheme 3) gave a 35:65 mixture of the 2,5-dihydro- 1,3,4-triazole 21 and the crystalline 4,5-dihydro 1,2,3-triazole 22 . Treatment of 21 and 22 with base gave the hydroxytriazoles 23 and 24 , respectively. The structure of 24 was established by X-ray analysis. The triazole mixture 21/22 was separated by prep. HPLC at 5°. At room temperature, 21 already decomposed (half-life 21.6 h) leading in CDCI3 solution to a complex mixture (containing ca. 20–25% of the spirothiirane 27 and ca. 7–10% of its anomer) and in MeOH solution exclusively to the O,O,S-ortholactone 26 . Crystals of 22 proved be stable at 105°. Upon heating in petroleum ether at 100°, 22 was transformed into a ca. 1:1 mixture of 27 and the enol ether 28 . The reaction of 1 with ethyl diazoacetate (Scheme 4) in the presence of Rh2(OAc)4. 2H2O gave the unsaturated esters 29 (33%) and 30 (26%), whereas the analogous reaction with diethyl diazomalonate afforded the spirothiirane 31 (68%) and the enol ether 32 (29%). Complete transformation of 31 into 32 was achieved by the treatment with P(NEt2)3. Similary, 33 (69%) was prepared from 2 .  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号