首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Reactions of cinnamonitrile (trans-PhCH=CHCN) with [M(ClO4)(CO)(PPh3)2] (M=Rh or Ir) produce hydrogenation oftrans-PhCH=CHCN to PhCH2CH2CN at 100°C under 3 atm of hydrogen.  相似文献   

2.
Herein we present the first double deprotonation of acetonitrile (CH3CN) using two equivalents of a bimetallic iron-aluminium complex. The products of this reaction contain an exceeding simple yet rare [CHCN]2− dianion moiety that bridges two metal fragments. DFT calculations suggest that the bonding to the metal centres occurs through heavily polarised covalent interactions. Mechanistic studies reveal the intermediacy of a monomeric [CH2CN] complex, which has been characterised in situ. Our findings provide an important example in which a bimetallic metal complex achieves a new type of reactivity not previously encountered with monometallic counterparts.[1, 2] The isolation of a [CHCN]2− dianion through simple deprotonation of CH3CN also offers the possibility of establishing a broader chemistry of this motif.  相似文献   

3.
The complex potential energy surface of the H + CH2=CHCN reaction has been investigated at the BMC-CCSD level based on the geometric parameters optimized at the BHandHLYP/6-311++G(d,p) level. This reaction is revealed to be one of the significant loss processes of acrylonitrile. The BHandHLYP and M05-2X methods are employed to obtain initial geometries. The reaction mechanism confirms that H can attack on the C=C double bond or C and N atom of –CN group to form the chemically activated adducts IM1 (CH3CHCN), IM2 (CH2CH2CN), IM3′ (CH2=CHCHN) and IM5 (CH2=CHCNH), and direct H-abstraction paths may also occur. Temperature- and pressure-dependent rate constants have been carried out using Rice–Ramsperger–Kassel–Marcus theory with tunneling correction. IM1 (CH3CHCN) formed by collisional stabilization is the major product at the 760 Torr pressure of H2 and in the temperature range (200–1,600 K); whereas the production of IM2 (CH2CH2CN) is the main channel at 1,600–3,000 K. The calculated rate constants are in good agreement with the experimental data.  相似文献   

4.
The coordination properties of ylides R3P=CHCN and R3P=CHCH2CN were studied. Ylide R3P=CHCN reacts with [AuCl(tht)] (molar ratio 1 : 1, tht=tetrahydrothiophene) to give [AuCl{CH(PPh3)CN}] ( 1 ). Dinuclear complexes [(AuL)2{μ-C(PR3)CN}]ClO4nH2O (n=1, L=PPh3, R=Ph ( 2a ) or Tol (=4-MeC6H4) ( 2b ); n=0, R=Tol, L=P(pmp)3 ( 2c ; pmp=4-MeOC6H4 or AsPh3 ( 2d )) are the products of reactions between phosphonium salts (R3PCH2CN)ClO4 (R=Ph or Tol) and [Au(acac)L] (molar ratio 1 : 3, L=PPh3 or P(pmp)3; acacH=acetylacetone). The reaction of [Au(acac)PPh3] with (Ph3PCH2CH2CN)ClO4 (Au/P 2 – 5) gives the mononuclear complex [Au{CH(PPh3)CH2CN}(PPh3)]ClO4⋅0.5 H2O ( 3 ). Complexes 2b or 2c react with [Au(acetone)L]ClO4 (molar ratio 1 : 1, L=PPh3 or P(pmp)3), prepared in situ from [AuCl(L)] and AgClO4 in acetone, to give the corresponding trinuclear derivatives [(AuL)23-{C(PTol3)CN}(AuL)}](ClO4)2 (L=PPh3 ( 4a ) or P(pmp)3 ( 4b )]. We attempted unsuccessfully to prepare single crystals of 4a or 4b or of the triflate salt [{Au(PPh3)}23-{C(PTol3)CN}(AuPPh3)}](TfO)2⋅H2O ( 4a′ ), obtained by reacting 4a with 2 equiv. of KCF3SO3. In complexes 2 and 4 , two new types of coordination of the ylides R3P=CHCN are present. Attempts to coordinate three AuL groups to the N-atom of (R3PCCN) induced by aurophilicity (see A and B ) were unsuccessful. The reaction between PdCl2 and R3P=CHCN (molar ratio 1 : 2) gives trans-[PdCl2{CH(PTol3)CN}2] ( 5 ).  相似文献   

5.
The Electrochemical behaviour of a series of cationic hydrido-complexes of Fe(II) of general formula trans-[FeH(L)(DPE)2] (BPh4)(L=N2, C2H5N, C6H5CN, CH2CHCN, CH3CN, P(OCH3)3, P(OC2H5)3, CO; DPE=1,2- bis(diphenylphosphino)ethane) has been investigated in 1,2-dimethoxyethane at the platinum electrode. The reduction of these d6 complexes has been found to proceed by an ECE mechanism in which a one-electron transfer, generating a transient d7 species, is followed by the fast loss of one of the neutral ligands and a further one-electron reduction of the pentacoordinated intermediates to the final d8 anionic hydrides. The reduced species are stabilized considerably at low temperature. The ligands, L, are divided into two groups according to their bonding properties, with particular references to their ability to act as π- acceptors. Weak π-bonders (N2, C2H5N, C6H5CN, CH2CHCN, CH3CN) are lost in the chemical step interposed between the two charge-transfer processes, whereas strong π-accepting ligands (CO and P(OR)3) favour dissocia tion of one end of a diphosphine.  相似文献   

6.
The thermal decomposition of acetonitrile was studied behind reflected shocks in a single pulse shock tube over the temperature range 1350–1950 K at overall densities of approximately 3 × 10?5 mol/cc. Methane and hydrogen cyanide are the major reaction products. They are formed by an attack of H and CH3 radicals on acetonitrile. The initiation step of the pyrolysis is the self dissociation of acetonitrile: for which the following rate constant was obtained: k1 = 6.17 × 1015exp(?96.6 × 103/RT)sec?1. Where R is given in units of cal/K mol. Additional reaction products which appear in the pyrolysis are: C2H2, C2H4, CH2?CHCN, CH?CHCN, C2H5CN, C2N2, and C4H2. Acetylene is formed from methane pyrolysis and becomes a major reaction product at high temperatures. Acrilonitrile and cyanoacetylene are secondary products originating from the CH2CN radical. Rate parameters for the formation of the reaction products are given.  相似文献   

7.
The formation of 3-aminocrotononitrile and 4-amino-2,6-dimethylaminopyrimidine has been observed during the course of the hydrogermolysis reaction between a germanium amide and a germanium hydride, either as the free amines or bound to germanium as ligands consisting of their conjugate bases. These species arise from the dimerization or trimerization of acetonitrile, and have only been detected when germanium amides having substantial steric bulk at the germanium center are employed in the reaction. The isolation of germanium-bound 3-aminocrotononitrile compounds suggests that α-germyl nitrile species R3GeCH2CN that result from the reaction of the germanium amides R3GeNMe2 with CH3CN solvent also can further react with CH3CN to generate the 3-aminocrotononitrile and 4-amido-2,6-dimethylaminopyrimidine species. The two germanes Ph3Ge[NHC(CH3)CHCN] and 2,6-dimethyl-4-(triphenylgermylamino)pyrimidine have been prepared and structurally characterized, and the conversion of Ph3GeCH2CN to Ph3Ge[NHC(CH3)CHCN] and 2,6-dimethylamino-4-(triphenylgermylamino)pyrimidine as well as the conversion of Ph3Ge[NHC(CH3)CHCN] to 2,6-dimethyl-4-(triphenylgermylamino)pyrimidine in acetonitrile solvent has been observed using 1H NMR spectroscopy.  相似文献   

8.
Crystal Structure and Vibrational Spectrum of (H2NPPh3)2[SnCl6]·2CH3CN Single crystals of (H2NPPh3)2[SnCl6]·2CH3CN ( 1 ) were obtained by oxidative addition of tin(II) chloride with N‐chloro‐triphenylphosphanimine in acetonitrile in the presence of water. 1 is characterized by IR and Raman spectroscopy as well as by a single crystal structure determination: Space group , Z = 2, lattice dimensions at 193 K: a = 1029.6(1), b = 1441.0(2), c = 1446.1(2) pm, α = 90.91(1)°, β = 92.21(1)°, γ = 92.98(1)°, R1 = 0.0332. 1 forms an ionic structure with two different site positions of the [SnCl6]2? ions. One of them is surrounded by four N‐hydrogen atoms of four (H2NPPh3)+ ions, four CH3CN molecules form N–H···N≡C–CH3 contacts with the other four N‐hydrogen atoms of the cations. Thus, 1 can be written as [(H2NPPh3)4(CH3CN)4(SnCl6)]2+[SnCl6]2?.  相似文献   

9.
Single crystals of [Be33‐O)3(MeCN)6{Be(MeCN)3}3](I)6·4CH3CN ( 1 ·4CH3CN) were obtained in low yield by the reaction of beryllium powder with iodine in acetonitrile suspension, which probably result from traces of beryllium oxide containing the applied beryllium metal. The compound 1 ·4CH3CN forms moisture sensitive, colourless crystal needles, which were characterized by IR spectroscopy and X‐ray diffraction (Space group Pnma, Z = 4, lattice dimensions at 100(2) K: a = 2317.4(1), b = 2491.4(1), c = 1190.6(1) pm, R1 = 0.0315). The hexaiodide complex cation 1 6+consists of a cyclo‐Be3O3 core with slightly distorted chair conformation, stabilized by coordination of two acetonitrile ligands at each of the beryllium atoms and by a {Be(CH3CN)3}2+ cation at each of the oxygen atoms. This unique coordination behaviour results in coplanar OBe3 units with short Be–O distances of 155.0 pm and 153.6 pm on average of bond lengths within the cyclo‐Be3O3 unit and of the peripheric BeO bonds, respectively. Exposure of compound 1 ·4CH3CN to moist air leads to small orange crystal plates of [Be(H2O)4]I2·2CH3CN ( 3 ·2CH3CN). According to the crystal structure determination (Space group C2/c, Z = 4, lattice dimensions at 100(2) K: a = 1220.7(1), b = 735.0(1), c = 1608.5(1) pm, β = 97.97(1)°, R1 = 0.0394), all hydrogen atoms of the dication [Be(H2O)4]2+ are involved to form O–H ··· N and O–H ··· I hydrogen bonds with the acetonitrile molecules and the iodide ions, respectively. Quantum chemical calculations (B3LYP/6‐311+G**) at the model [Be33‐O)3(HCN)6{Be(HCN)3}3]6+ show that chair and boat conformation are stable and that the distorted chair conformation is stabilized by packing effects.  相似文献   

10.
A mass spectrometer fast atom bombardment source has been used to synthesize, in the gas phase, the ion-molecule complexes of transition-metal ions (Ni+, CO+, Fe+, and Mn+) with α- or β-unsaturated alkenenitriles, RCH=CHCN (R=H, CH3, and C2H5) and CH3CH=CHCH2CN, and 2-methyl glutaronitrile. The metastable ion fragmentations of the complexes are monitored in the first held-free region by B/E linked scans. Surprisingly, an intense HCN loss via an intermediate (C n H2n ?2)?M+?(HCN) is observed for the complexes of the alkenenitriles. The metal ions significantly affect the fragmentation processes. The coexistence of both end-on and side-on coordination modes is suggested to explain the fragmentations.  相似文献   

11.
One-electron oxidized zirconium chloride clusters were obtained from solid state precursors Rb5Zr6Cl18B and K3Zr6Cl15Be by dissolution in CH3CN in the presence of Et4NCl and isolated as the salts (Et4N)4Zr6Cl18B · 2 CH3CN and (Et4N)5Zr6Cl18Be · 3 CH3CN. (Et4N)4Zr6Cl18B · 2 CH3CN crystallizes in the space group P1 (#2) with a = 12.329(5) Å, b = 12.657(6) Å, c = 13.136(8) Å, α = 118.28(4)°, β = 93.45(4)°, γ = 105.54(3)°, V = 1696(2) Å3, and Z = 1. (Et4N)5Zr6Cl18Be · 3 CH3CN was refined in the space group C2/c (# 15) with a = 24.166(11) Å, b = 13.265(6) Å, c = 25.86(2) Å, β = 104.21(4)°, V = 8037(7) Å3, and Z = 4; the space group reflects the pseudo-symmetry of the crystal, the true symmetry of the structure is lower. The removal of one electron from the Zr? Zr bonding HOMO of both clusters results in cluster expansion of similar magnitude in both compounds. Moisture from the added Et4NCl is the likely oxidant, but the possibility that acetonitrile may be reduced by [(Zr6Be)Cl18]6? is not ruled out.  相似文献   

12.
PPh3Me[MoBr5(CH3CN)]. I.R. Spectrum, Magnetic Behaviour, and Crystal Structure Molybdenum tetrabromide and acetonitrile form MoBr4(CH3CN)2, from which PPh3Me[MoBr5(CH3CN)] is obtained by reaction with PPh3MeBr in dibromo methane. Both compounds are characterized by their IR spectra. By evaluation of the magnetic susceptibility of PPh3Me[MoBr5(CH3CN)] in the temperature range of 4.2 to 290 K the Curie-Weiss parameters μcw = 2.65 B.M. and Θ = ?44 K were obtained. The crystal structure of PPh3Me[MoBr5(CH3CN)] was determined by X-ray diffraction (2426 observed reflexions, R = 0.082). Crystal data: a = 1064.9, b = 2172.1, c = 1330.4 pm, β = 119.92º, space group P21/c, Z = 4. In the crystal, PPh3Me+ and [MoBr5(CH3CN)]? ions are packed in alternate cation and anion layers perpendicular to a. In the anion the Mo atom has a distorted octahedral coordination. The bond length of the bromine atom in trans position to the N atom is considerably shorter than the other MoBr distances.  相似文献   

13.
Two new Ni(II) complexes of 2,6-bis[1-(2,6-diethylphenylimino)ethyl]pyridine (L1), 2,6-bis[1-(4-methylphenylimino)ethyl]pyridine (L2 ) have been synthesized and structurally characterized. Complex Ni(L1)Cl2?·?CH3CN (1), exhibits a distorted trigonal bipyramidal geometry, whereas complex Ni(L1)(CH3CN)Cl2 (2), is six-coordinate with a geometry that can best be described as distorted octahedral. The catalytic activities of complexes 1, 2, Ni{2,6-bis[1-(2,6-diisopropyl-phenylimino)ethyl]pyridine} Cl2?·?CH3CN (3), and Ni{2,6-bis[1-(2,6-dimethylphenylimino) ethyl]pyridine}Cl2?·?CH3CN (4), for ethylene polymerization were studied under activation with MAO.  相似文献   

14.
The preparation of several kinds of derivatives of 1-substituted D -arabinc-hex-1-ene-3,4,5,6-tetrols is described. Some of these compounds, having a ‘pseudo-formyl’ group (? CH?CHCN, ? CH?CHSO2CH3) are ‘pseudo-aldehydo-sugars’. Their ability to react as aldehydo-sugars was examined in light of their 13C-NMR. spectra which provide information on their electron density at C(1) and C(2).  相似文献   

15.
Complexes (η4-PhCH=CHCR=NPh)Fe(CO)3, where R=H(1a) and CH3 were synthesized in excellent yield from the reaction of the corresponding α,β-unsaturated ketimines with excess Fe2(CO)9. Reaction of la with (Ph)2CHLi and (CH3)2(NC)CLi at ?78°C or ambient temperature followed by acid quenching gave trans-PhCH=CHCHRNHPh, where R=CHPH2 and C(CH3)2CN, respectively, in good yield. In the presence of 1 atm. of CO the reaction of 1a with (CH3)2(NC)CLi, followed by CuCl2 oxidation resulted in the formation of a carbamyl choride, trans-PhCH=CHCH[C(CH3)2CN]N(Ph)COCl. This species was converted to a carbamate compound trans-PhCH=CHCH[C(CH3)2 - CN]N(Ph)COOCH3 in MeOH in the presence of Ag+.  相似文献   

16.
Synthesis, Vibrational Spectra, and Crystal Structures of the Nitrato Argentates (Ph4P)[Ag(NO3)2(CH3CN)]·CH3CN and (Ph4P)[Ag2(NO3)3] Tetraphenylphosphonium bromide reacts in acetonitril suspension with excess silver nitrate to give (Ph4P)[Ag(NO3)2(CH3CN)]·CH3CN ( 1 ), whereas (Ph4P)[Ag2(NO3)3] ( 2 ) is obtained in a long‐time reaction from (Ph4P)Br and excess AgNO3 in dichloromethane suspension. Both complexes were characterized by vibrational spectroscopy (IR, Raman) and by single crystal structure determinations. 1 : Space group P21/c, Z = 4, lattice dimensions at 193 K: a = 1781.5(3), b = 724.8(1), c = 2224.2(3) pm, β = 96.83(1)°, R1 = 0.0348. 1 contains isolated complex units [Ag(NO3)2(CH3CN)]?, in which the silver atom is coordinated by the chelating nitrate groups and by the nitrogen atom of the solvated CH3CN molecule with a short Ag—N distance of 220.7(4) pm. 2 : Space group I2, Z = 4, lattice dimensions at 193 K: a = 1753.4(4), b = 701.7(1), c = 2105.5(4) pm, R1 = 0.072. In the polymeric anions [Ag2(NO3)3]? each silver atom is coordinated in a chelating manner by one nitrate group and by two oxygen atoms of two bridging nitrate ions. In addition, each silver atom forms a weak π‐bonding contact with a phenyl group of the (Ph4P)+ ions with shortest Ag···C separations of 266 and 299 pm, respectively, indicating a (4+1) coordination of silver atoms.  相似文献   

17.
Reactions of Group 4 metallocene alkyne complexes [Cp′2M(η2‐Me3SiC2SiMe3)] ( 1 : M=Zr, Cp′=Cp*=η5‐pentamethylcyclopentadienyl; 2 a : M=Ti, Cp′=Cp*, and 2 b : M=Ti, Cp′2=rac‐(ebthi)=rac‐1,2‐ethylene‐1,1′‐bis(η5‐tetrahydroindenyl)) with diphenylacetonitrile (Ph2CHCN) and of the seven‐membered zirconacyclocumulene 3 with phenylacetonitrile (PhCH2CN) were investigated. Different compounds were obtained depending on the metal, the cyclopentadienyl ligand and the reaction temperature. In the first step, Ph2CHCN coordinated to 1 to form [Cp*2Zr(η2‐Me3SiC2SiMe3)(NCCHPh2)] ( 4 ). Higher temperatures led to elimination of the alkyne, coordination of a second Ph2CHCN and transformation of the nitriles to a keteniminate and an imine ligand in [Cp*2Zr(NC2Ph2)(NCHCHPh2)] ( 5 ). The conversion of 4 to 5 was monitored by using 1H NMR spectroscopy. The analogue titanocene complex 2 a eliminated the alkyne first, which led directly to [Cp*2Ti(NC2Ph2)2] ( 6 ) with two keteniminate ligands. In contrast, the reaction of 2 b with diphenylacetonitrile involved a formal coupling of the nitriles to obtain the unusual four‐membered titanacycle 7 . An unexpected six‐membered fused zirconaheterocycle ( 8 ) resulted from the reaction of 3 with PhCH2CN. The molecular structures of complexes 4 , 5 , 6 , 7 and 8 were determined by X‐ray crystallography.  相似文献   

18.
A series of RuII polypyridyl complexes of the structural design [RuII(R?tpy)(NN)(CH3CN)]2+ (R?tpy=2,2′:6′,2′′‐terpyridine (R=H) or 4,4′,4′′‐tri‐tert‐butyl‐2,2′:6′,2′′‐terpyridine (R=tBu); NN=2,2′‐bipyridine with methyl substituents in various positions) have been synthesized and analyzed for their ability to function as electrocatalysts for the reduction of CO2 to CO. Detailed electrochemical analyses establish how substitutions at different ring positions of the bipyridine and terpyridine ligands can have profound electronic and, even more importantly, steric effects that determine the complexes’ reactivities. Whereas electron‐donating groups para to the heteroatoms exhibit the expected electronic effect, with an increase in turnover frequencies at increased overpotential, the introduction of a methyl group at the ortho position of NN imposes drastic steric effects. Two complexes, [RuII(tpy)(6‐mbpy)(CH3CN)]2+ (trans‐[ 3 ]2+; 6‐mbpy=6‐methyl‐2,2′‐bipyridine) and [RuII(tBu?tpy)(6‐mbpy)(CH3CN)]2+ (trans‐[ 4 ]2+), in which the methyl group of the 6‐mbpy ligand is trans to the CH3CN ligand, show electrocatalytic CO2 reduction at a previously unreactive oxidation state of the complex. This low overpotential pathway follows an ECE mechanism (electron transfer–chemical reaction–electron transfer), and is a direct result of steric interactions that facilitate CH3CN ligand dissociation, CO2 coordination, and ultimately catalytic turnover at the first reduction potential of the complexes. All experimental observations are rigorously corroborated by DFT calculations.  相似文献   

19.
Preparation and Structures of Chlorostannates(II). I. Some New Trichlorostannates of Monovalent Cations KSnCl3 · 1/2 CH3CN is obtained by recrystallizing KSnC13 from acetonitrile. The compound forms monoclinic crystals, space group P21/c (a = 4.525(6), b = 20.34(2), c = 8.061(7) Å, β = 90.93(9)°). [Cu(CH3CN)3]SnCl3 is prepared by reacting equimolar amounts of CuCl and SnCl2 in acetonitrile. It crystallizes in the monoclinic space group P21/n (a = 7.984(9), b = 20.77(2), c = 8.34(2) Å, β = 101.6(1)°). Whereas in KSnCl3 · l/2 CH3CN there is a three dimensional connection of the SnCl3? ions, in which the potassium ions participate, the trichlorostannate ions in [Cu(CH3CN)3]SnCl3 are linked to one dimensional chains by Sn…?Cl bridges.  相似文献   

20.
The effects of mixed CH3CN(SINGLEBOND)H2O solvents on rates of aminolysis of ionized phenyl salicylate, PS, reveal a nonlinear decrease in the nucleophilic second-order rate constants, knms, (for aminolysis) with increase in the content of CH3CN until it becomes ∼50%, v/v. The values of knms remain almost unchanged with change in the CH3CN content within 50 to 70 or 80%, v/v. The effects of mixed CH3CN(SINGLEBOND)H2O solvents on pKa of leaving group, phenol, and protonated amine nucleophile have been concluded to be the major source for the observed mixed solvent effects on knms. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet: 30: 301–307, 1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号