首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 2 毫秒
1.
We study the generation of periodic velocity and temperature fields in a plane horizontal crucible of molten metal under the action of a horizontal temperature gradient. The geometry and the boundary conditions are similar to those encountered in the Bridgman growth process of semiconductor crystals, although the present paper is limited to two-dimensional flows. We use transient finite difference and finite element algorithms which lead to identical results. We demonstrate the oscillatory mechanism in two different geometries.  相似文献   

2.
We study the steady-state three-dimensional flow which occurs in a horizontal crucible of molten metal under the action of a horizontal temperature gradient. The geometry and the boundary conditions are similar to those encountered in the Bridgman growth process of semiconductor crystals. We find that three-dimensional effects can have a dramatic influence upon the flow, which, before the onset of periodic disturbances, differs appreciably from its two-dimensional counterpart. We also investigate the sensitivity of the flow to non-symmetric disturbances.  相似文献   

3.
In this paper we present a new version of the ‘modified finite element method’ (MFEM) presented by Gresho, Chan, Lee and Upson.1 The main modification of the original algorithm is the introduction of a cost-effective and memory-saving iterative solver for the discretized Poisson equation for the pressure. The vectorization of the preconditioner has been especially considered. For low Prandtl number problems we also split the advection-diffusion operator of the energy equation into explicit and implicit parts. In that sense the present approach is related to the recent implicitization of the diffusive terms introduced by Gresho and Chan2 and by Gresho.3 The algorithm is applied to the study of buoyancy-driven flow oscillations occuring in a horizontal crucible of molten metal under the action of a horizontal temperature gradient.  相似文献   

4.
Laminar natural convection has been studied in a laterally heated vertical cylindrical enclosure with a free insulated surface and a centrally located constant temperature wall at the top. These conditions are a simplification of the conditions existing in a Czochralski crystal pulling system. The laminar, axisymmetric flow of a Newtonian, constant physical properties fluid under Boussinesq’s approximation has been considered. Governing equations in primitive variable form are solved numerically by control volume method. SIMPLE algorithm due to Patankar has been used for the numerical simulation. The effects of the constant wall heat flux boundary condition at the side wall have been investigated whereas the bottom wall is considered to be insulated. Streamlines and isotherms are presented for various Rayleigh numbers and Prandtl numbers. Heat flux vectors through the melt are plotted for selected cases. The axial velocity and temperature variations at different horizontal sections of the crucible have been presented graphically to explain the transport processes inside the crucible. It has been observed that in case of low Pr and high Ra, flow separation occurs at the vertical wall of the crucible which leads to an oscillatory flow as Ra increases. The investigation has been extended to the oscillatory regime of flow in the zone of supercritical Rayleigh numbers and some unsteady results are also presented. Finally a heat transfer correlation has been developed for steady-state case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号