首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of new 2,4‐diaminothieno[2,3‐d]‐ and 2,4‐diaminopyrrolo[2,3‐d]pyrimidine derivatives were synthesised. Reaction of 2‐amino‐4,6‐dichloropyrimidine‐5‐carbaldehyde ( 1 ) with ethyl mercaptoacetate, methyl N‐methylglycinate or ethyl glycinate afforded ethyl (2‐amino‐4‐chloro‐5‐formylpyrimidin‐6‐yl)thioacetate ( 2a ), methyl N‐(2‐amino‐4‐chloro‐5‐formylpyrimidin‐6‐yl)‐N‐methylglycinate ( 2b ) and ethyl N‐(2‐amino‐4‐chloro‐5‐formylpyrimidin‐6‐yl)glycinate ( 2c ), respectively. Compounds 2a,b by treatment with bases cyclised to the corresponding 2‐amino‐4‐chlorothieno‐ and pyrrolo[2,3‐d]pyrimidine‐6‐carboxylates ( 3a,b ). Heating 2,4‐diamino‐6‐chloropyrimidine‐5‐carbaldehyde ( 5 ) with ethyl mercaptoacetate or methyl N‐methylglycinate gave 2,4‐diaminothieno[2,3‐d]‐ and 2,4‐diaminopyrrolo[2,3‐d]‐pyrimidine‐6‐carboxylates ( 6a,b ), whereas compound 5 with ethyl glycinate under the same reaction conditions afforded ethyl N‐(2,4‐diamino‐5‐formylpyrimidin‐6‐yl)glycinate ( 7 ). Treatment of 2,4‐diaminothieno[2,3‐d]pyrimidine‐6‐carboxylic acid ( 8a ) with 4‐methoxy‐, 3,4,5‐trimethoxyanilines or ethyl N‐(4‐aminobenzoyl)‐L‐glutamate in the presence of dicyclohexylcarbodiimide and 1‐hydroxybenzotriazole furnished the corresponding N‐arylamides 9‐11.  相似文献   

2.
The reaction of ethyl 1H-benzimidazole-2-acetate (1) with methyl or ethyl isocyantes 2a,b resulted in excellent yields of the respective 2-methyl- or 2-ethylpyrimido[1,6-a]benzimidazole-1,3(2H,5H)-diones 3a,b , while the reaction of 1 with phenyl isocyanate (2c) gave, unexpectedly, ethyl 2-(1-phenylcarbamoyl-1H,3H-benzimidazol-2-ylidene)-2-phenylcarbamoylacetate (4). Alkylation of 3 with trimethyl or triethyl phosphates 5a,b led to the 5-methyl or 5-ethyl derivatives 6a-d . Chlorination of 6 with sulfuryl chloride afforded the 4-chloro derivatives 7a-d.  相似文献   

3.
The reaction of the 2‐(1‐alkylhydrazino)‐6‐chloroquinoxaline 4‐oxides 1a,b with diethyl acetone‐dicarboxylate or 1,3‐cyclohexanedione gave ethyl 1‐alkyl‐7‐chloro‐3‐ethoxycarbonylmethylene‐1,5‐dihydropyridazino[3,4‐b]quinoxaline‐3‐carboxylates 5a,b or 6‐alkyl‐10‐chloro‐1‐oxo‐1,2,3,4,6,12‐hexahydroquinoxalino[2,3‐c]cinnolines 7a,b , respectively. Oxidation of compounds 5a,b with nitrous acid afforded the ethyl 1‐alkyl‐7‐chloro‐3‐ethoxycarbonylmethylene‐4‐hydroxy‐1,4‐dihydropyridazino‐[3,4‐b]quinoxaline‐4‐carboxylates 9a,b , whose reaction with base provided the ethyl 2‐(1‐alkyl‐7‐chloro‐4‐oxo‐1,4‐dihydropyridazino[3,4‐b]quinoxalin‐3‐yl)acetates 6a,b , respectively. On the other hand, oxidation of compounds 7a,b with N‐bromosuccinimide/water furnished the 4‐(1‐alkyl‐7‐chloro‐4‐oxo‐1,4‐dihydropyridazino[3,4‐b]quinoxalin‐3‐yl)butyric acids 8a,b , respectively. The reaction of compound 8a with hydroxylamine gave 4‐(7‐chloro‐4‐hydroxyimino‐1‐methyl‐1,4‐dihydropyridazino[3,4‐b]quinoxalin‐3‐yl)‐butyric acid 12 .  相似文献   

4.
The reactions of 3-acetyl-4-ethoxycarbonyl- or 3,4-diethoxycarbonylpyrrolo[1,2-a]pyrimidine derivatives 7a,b , which were prepared by condensation of the 2-aminopyrrole ( 4 ) with ethyl 3-ethoxymethylene-2,4-dioxovalerate ( 5a ) or ethyl ethoxymethyleneoxaloacetate ( 5b ), with diazomethane are described. Thus, reaction of 7a , with diazomethane gave ethyl 2a-acetyl-7-cyano-2a,3a-dihydro-5,6-dimethyl-3H -cyclopropa[e]pyrrolo[1,2-a]pyrimidine-3a-carboxylate ( 11 ) in 74% yield, which was readily transformed into the 1-pyrrol-2-yl-pyrrole ( 18 ) by treatment with potassium hydroxide. On the other hand, reaction of 7b with diazomethane afforded three products whose structures were assigned as diethyl 7-cyano-2a,3a-dihydro-5,6-dimethyl-3H-cyclopropa[e]pyrrolo[1,2-a]pyrimidine-2a,3a-carboxylate ( 20 ), 6-cyano-7,8-dimethyl-3a,3b,5,9a-tetrahydro-4H -aziridino[c]-1H or 3H-pyrazolo[3,4-e]pyrrolo[1,2-a]pyrimidine-3a,9a-dicarboxylates ( 21,22 ). Ring Transformation of 20 to 25 was not observed.  相似文献   

5.
Several thiazole nucleosides structurally related to tiazofurin (1) and ARPP (2) were prepared, in order to determine whether these nucleosides had enhanced antitumor/antiviral activities. Ring closure of 1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)thiourea (4) with ethyl bromopyruvate (5a) gave ethyl 2-(2,3,5-tri-O-benzoyl-β-D-ribofuranosylamino)thiazole-4-carboxylate (6a) . Treatment of 6a with sodium methoxide furnished methyl 2-(β-D-ribopyranosylamino)thiazole-4-carboxylate (9) . Ammonolysis of the corresponding methyl ester of 6a gave a unique acycloaminonucleoside 2-[(1R, 2R, 3R, 4R)(1-benzamido-2,3,4,5-tetrahydroxypentane)amino]-thiazole-4-carboxamide (7a) . Direct glycosylation of the sodium salt of ethyl 2-mercaptothiazole-4-carboxylate (12) with 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide (11) gave the protected nucleoside 10 , which on ammonolysis provided 2-(β-D-ribofuranosylthio)thiazole-4-carboxamide (3b) . Similar glycosylation of 12 with 2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranosyl chloride (13) , followed by ammonolysis gave 2-(2-deoxy-β-D-ribofuranosylthio)thiazole-4-carboxamide (3c) . The structural assignments of 3b, 7a , and 9 were made by single-crystal X-ray analysis and their hydrogen bonding characteristics have been studied. These compounds are devoid of any significant antiviral/antitumor activity in vitro.  相似文献   

6.
Reaction of Ethyl Diazoacetate with 1,3-Thiazole-5(4H)-thiones Reaction of ethyl diazoacetate ( 2a ) and 1,3-thiazole-5(4H)-thiones 1a,b in Et2O at room temperature leads to a complex mixture of the products 5–9 (Scheme 2). Without solvent, 1a and 2a react to give 10a in addition to 5a–9a . In Et2O in the presence of aniline, reaction of 1a,b with 2a affords the ethyl 1,3,4-thiadiazole-2-carboxylate 10a and 10b , respectively, as major products. The structures of the unexpected products 6a, 7a , and 10a have been established by X-ray crystallography. Ethyl 4H-1,3-thiazine-carboxylate 8b was transformed into ethyl 7H-thieno[2,3-e][1,3]thiazine-carboxylate 11 (Scheme 3) by treatment with aqueous NaOH or during chromatography. The structure of the latter has also been established by X-ray crystallography. In the presence of thiols and alcohols, the reaction of 1a and 2a yields mainly adducts of type 12 (Scheme 4), compounds 5a,7a , and 9a being by-products (Table 1). Reaction mechanisms for the formation of the isolated products are delineated in Schemes 4–7: the primary cycloadduct 3 of the diazo compound and the C?S bond of 1 undergoes a base-catalyzed ring opening of the 1,3-thiazole-ring to give 10 . In the absence of a base, elimination of N2 yields the thiocarbonyl ylide A ′, which is trapped by nucleophiles to give 12 . Trapping of A ′, by H2O yields 1,3-thiazole-5(4H)-one 9 and ethyl mercaptoacetate, which is also a trapping agent for A ′, yielding the diester 7 . The formation of products 6 and 8 can be explained again via trapping of thiocarbonyl ylide A ′, either by thiirane C (Scheme 6) or by 2a (Scheme 7). The latter adduct F yields 8 via a Demjanoff-Tiffeneau-type ring expansion of a 1,3-thiazole to give the 1,3-thiazine.  相似文献   

7.
7‐Chloromethyl‐6‐nitro‐5H‐thiazolo[3,2‐a]pyrimidin‐5‐one ( 2 ) is obtained by cyclocondensation of 2‐aminothiazole with ethyl 4‐chloroacetoacetate. This product was shown to react with various nitronate or malonate anions under microwave irradiation to give potentially bioactive 6‐nitro‐5H‐thiazolo[3,2‐a]pyrimidin‐5‐ones. Extension to other anions centered on S atom allows for the generalization this synthetic procedure.  相似文献   

8.
The reactions of α‐ferrocenylmethylidene‐β‐oxocarboxylates ( 1 , 2 , 3a , and 3b ) with N‐methyl‐ and N‐(2‐hydroxyethyl)hydrazines ( 5a , 5b ) afford ethyl 1‐alkyl‐5‐aryl(methyl)‐3‐ferrocenylpyrazole‐4‐carboxylates ( 6a , 6b , 6c , 6d , 6e ) (~50%) and N‐alkylhydrazine insertion products, viz., ethyl (N′‐acyl‐N′‐alkylhydrazino)‐3‐ferrocenylpropanoates ( 7a , 7b , 7c , 7d , 7e ) (~20%) and 1‐acyl‐2‐(N′‐alkyl‐N′‐ethoxycarbonylhydrazino)‐2‐ferrocenylethanes ( 8a , 8b , 8c , 8d , 8e ) (~10%). The structures of the compounds obtained were established based on the spectroscopic data and X‐ray diffraction analysis (for pyrazoles 6a and 6b ). J. Heterocyclic Chem., (2011).  相似文献   

9.
The N-oxide 2 of furo[3,2-b]pyridine ( 1 ) was cyanated by the Reissert-Henze reaction with potassium cyanide and benzoyl chloride to give 5-cyano derivative 3 , which was converted to the carboxamide 4 , carboxylic acid 5 , ethyl ester 6 and ethyl imidate 8 . Chlorination of 2 with phosphorus oxychloride yielded 2-9a , 3- 9b , 5- 9c and 7-chloro derivative 9d . Reaction of 9d with sodium methoxide, pyrrolidine, N,N-dimethylformamide and ethyl cyanoacetate afforded 7-methoxy- 10 , 7-(1-pyrrolidyl)- 11 and 7-dimethylaminofuro[3,2-b]pyridine ( 14 ) and 7-(1-cyano-1-ethoxy-carbonyl)methylene-4,7-dihydrofuro[3,2-b]pyridine ( 12 ). Nitration of 2 with a mixture of fuming nitric acid and sulfuric acid gave 2-nitrofuro[3,2-b]pyridine N-oxide ( 15 ).  相似文献   

10.
Certain 1‐ethyl‐ and 1‐aryl‐6‐fluoro‐1,4‐dihydroquinol‐4‐one derivatives were synthesized and evaluated for antimycobacterial and cytotoxic activities. Preliminary results indicated that, for 1‐aryl‐6‐fluoroquinolones, both 7‐(piperazin‐1‐yl)‐ and 7‐(4‐methylpiperazin‐1‐yl) derivatives, 9b and 11a , are able to completely inhibit the growth of M. tuberculosis at a concentration of 6.25 μg/ml, while the 7‐[4‐(2‐oxo‐2‐phenylethyl)piperazin‐1‐yl] derivative 13 exhibits only 31% growth inhibition at the same concentration. For 1‐ethyl‐6‐fluoroquinolones, both 7‐[4‐(2‐oxopropyl)piperazin‐1‐yl]‐ and 7‐[4‐(2‐oxo‐2‐phenylethyl)piperazin‐1‐yl]‐derivatives, 2a and 2b , respectively, show complete inhibition, while their 2‐iminoethyl and substituted phenyl counterparts 3a and 2c are less active. In addition, the 6,8‐difluoro derivative was a more‐favorable inhibitor than its 6‐fluoro counterpart ( 2b vs. 2d ). These results deserve full attention especially because 2a, 2b, 9b , and 11a are non‐cytotoxic at a concentration of 100 μM . Furthermore, compound 9b proved to be a potent anti‐TB agent with selective index (SI)>40 and an EC90 value of 5.75 μg/ml.  相似文献   

11.
Reactions of o-Quinones with Amines and Proteins. 7a-Methyl-5,6,7,7a-tetrahysroindole Derivatives from 4-Methylcatechol and Enamines Methyl l-[2′-(methoxycarbonyl)ethyl]-7a-methyl-5,6-dioxo-5.6.7,7a-tetrahydro-indole-3-carboxylate ( 1 ) was isolated after the oxidation of 4-methylcatechol with silver ( 1 ) oxide in the presence of b?-alanine methyl ester in glacial acetic acid. The formation of 1 requires in situ dehydrogenation of the b?-aminocarboxylate and addition of the resulting enamine to 4-methyl-1,2-benzoquinone. Reaction of ethyl 3-(phenylamino)crotonate with 4-methyl-1,2-benzoquinone afforded ethyl 2,7a-dimethyl-5,6-dioxo-1-phenyl-5,6,7,7a-tetrahydroindole-3-carboxylate ( 6 ). Despite the fact that the yields are low, the addition of enamines to o-quinones represents an interesting novel extension of the Nenitzescu-reaction which is well known in the p-quinone series. Compound 1 may be considered as a novel model for the crosslinking of proteins by o-quinones. Formation of 1 was, however, not observed under physiological conditions.  相似文献   

12.
A series of N‐alkylphthalazinone were synthesized by the reaction of phthalazin‐1(2H)‐one derivatives 1a , 1b , 1c with alkylating agents namely, propargyl, allyl bromide, epichlorohydrin, 1,3‐dichloro‐2‐propanol, 4‐bromobutylacetate, and 1‐(bromomethoxy)ethyl acetate to give the corresponding N‐alkylphthalazinone 2a , 2b , 2c , 3a , 3b , 3c , 5a , 5b , 5c , 6a , 6b , 6c , 7a , 7b , 7c , and 9a , 9b , 9c . Alkylation of phthalazin‐1(2H)‐thione to give a series from S‐alkylphthalazine 12 , 13 , 14 and thioglycosides 15 and 17 was performed. Deprotection of compounds 7a , 7b , 7c , 9a , 9b , 9c , 15 , and 17 resulted in the formation of the corresponding products 8a , 8b , 8c , 10a , 10b , 10c , 16 , and 18 . The structure of newly synthesized compounds was assigned by IR, 1H, 13C NMR, and elemental analysis. Some of these compounds were screened for antiviral and antimicrobial activity.  相似文献   

13.
Phase-transfer alkylation of the 2-oxocycloalkane-l-carbonitriles 1a and 1b with ethyl 4-bromo-3-methoxy-2-butenoate ( 2 ), followed by deprotection and base-catalyzed cyclization gave the annulated cyclopentenones 5a and 5b , respectively, in high overall yields (Scheme 1). Stereoselective catalytic hydrogenation of 5b followed by de-ethoxycarbonylation afforded 14-oxo-cis-bicyclo[10.3.0]pentadecane-l-carbonitrile ( 7 ). Treatment of 7 with LiN(i-Pr)2 in THF gave the known synthetic muscone precursor 8 (Scheme 2). The tricyclo[10.4.0.01,15]hexadecan-14-one ( 14 ) was prepared from 7 in 5 steps by a reaction sequence proceeding without affecting the chiral centres (Scheme 2). The structure of 14 was established by X-ray structure analysis (Figure).  相似文献   

14.
The synthesis of four electropolymerizable 2,2′-bipyridinium salts with tuned reduction potential (E1°) is described (N,N′-ethylene-4-methyl-4′-vinyl-2,2′-bipyridinium dibromide ( 4 ; E1° ?–0.48 V), 4-methyl-N, N′-(trimethylene)-4′-vinyl-2,2′-bipyridinium dibromide ( 5 ; E1°? ?0.66 V), N,N′-ethylene-4-methyl-4′-[2-(1H-pyrrol-1-yl)ethyl]-2, 2′-bipyridinium bis(hexafluorophosphate) ( 6b ; E1°? ?0.46 V), and 4-methyl-4′-[2-(1H-pyrrol-1-yl)ethyl]-N, N′-(trimethylene)-2,2′-bipyridinium bis(hexafluorophosphate) ( 7b ; E1°? ?0.66 V)). E1°-Tuning is based on the torsional angle C(3)–C(2)–C(2′)–C(3′), imposed by the N,N′-ethylene and N,N′-(trimethylene) bridge. The vinylic compounds 4 and 5 undergo cathodic, the pyrrole derivatives 6b and 7b anodic electropolymerization on glassy carbon electrodes from MeCN solutions, yielding thin, surface-confined films with surface concentrations of redox-active material in the range 5 · 10?9 < Γ < 2.10?8 mol/cm2, depending on experimental conditions. The modified electrodes exhibit reversible ‘diquat’ electrochemistry in pure solvent/electrolyte. Copolymerization of 6b or 7b with pyrrole yields most stable electrodes. Bi ayer-film-modified electrodes were prepared by sequential electropolymerization of the monomers. The assembly electrode/poly- 6b /poly- 7b behaves as a switch, it transforms – as a Schmitt trigger – an analog input signal (the electrode potential) into a digital output signal (redox state of the outer polymer film). Forward-(electrode/poly- 7b /poly- 6b ) and reverse-biased assemblies (electrode/poly- 6b /poly- 7b ) were coupled to the electrochemical reduction of redox-active solution species, e.g. N- (cyanomethyl)-N′-methyl-4,4′-bipyridinium bis(hexafluorophosphate) ( 8 ). Zener-diode-like behavior was observed. Aspects of redox-polymer multilayer-film assemblies, sandwiched between two electronic conductors, are discussed in terms of molecular electronic devices.  相似文献   

15.
Radical copolymerization of alkyl 2‐norbornene‐2‐carboxylates (alkyl = Me 1a , nBu 1b ) with alkyl acrylates (alkyl = ethyl, methyl, and n‐butyl) was investigated. Copolymerization of 1a,b with the alkyl acrylates initiated by 1,1′‐azobis (cyclohexane‐1‐carbonitrile) at 85 °C proceeded to give random copolymers, although the homopolymerization of 1a,b did not proceed efficiently under the same conditions. Typically, bulk copolymerization of 1a with ethyl acrylate in a feed ratio of 1:3 ([ 1a ]:[EA]) afforded a copolymer with Mn = 33,300 containing 19.4 mol % of 1a unit in the composition. An increase of Tg derived from the incorporation of the rigid norbornane framework was observed, although the extent of the temperature rise was rather moderate. The ternary radical copolymerization of 1a,b /alkyl acrylate/N‐phenylmaleimide proceeded to give copolymers with the three repeating units in the main chain. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4597–4605, 2007  相似文献   

16.
6-Aminouracil and 6-aminothiouracil ( 1a, b ) were reacted with benzylidenemalononitrile 2a to afford the pyrido[2,3-d]pyrimidines 4a, b . On the other hand, the reaction of 1a, b with benzylidene ethyl cyanoacetate 2b result in a mixture of 5a,b and/or 6a,b respectively. Pyrido[2,3-d]thiazolo[1,2-b]pyrimidines 8a-c were synthesized from the reaction of 4b with α-halo compounds to give the intermediate derivatives 7a-c followed by cyclization using 70% H2SO4.  相似文献   

17.
A simple synthesis of furo[2,3-c]pyridine and its 2- and 3-methyl derivatives from ethyl 3-hydroxyisonicotinate ( 2 ) is described. The hydroxy ester 2 was O-alkylated with ethyl bromoacetate or ethyl 2-bromopropionate to give the diester 3a or 3b . Cyclization of compound 3a afforded ethyl 3-hydroxyfuro [2,3-c]pyridine-2-carboxylate ( 4 ) which was hydrolyzed and decarboxylated to give furo[2,3-c]pyridin-3(2H)-one ( 5a ). Cyclization of 3b gave the 2-methyl derivative 5b . Reduction of 5a and 5b with sodium borohydride yielded the corresponding hydroxy derivative 6a and 6b , respectively, which were dehydrated with phosphoric acid to give furo[2,3-c]pyridine ( 7a ) and its 2-methyl derivative 7b . 4-Acetylpyridin-3-ol ( 8 ) was O-alkylated with ethyl bromoacetate to give ethyl 2-(4-acetyl-3-pyridyloxy) acetate ( 9 ). Saponification of compound 9 , and the subsequent intramolecular Perkin reaction gave 3-methylfuro[2,3-c]pyridine ( 10 ). Cyclization of 9 with sodium ethoxide gave 3-methylfuro[2,3-c]pyridine-2-carboxylic acid, which in turn was decarboxylated to give compound 10 .  相似文献   

18.
1‐[2‐Phenyl‐1‐diazenyl]‐1‐[2‐phenylhydrazono]acetone or 1‐[‐2‐(4‐methylphenyl)‐1‐diazenyl]‐1‐[‐2‐(4‐methylphenyl)hydrazono]‐butan‐2‐one were produced via coupling the (E) 2‐oxopropanal‐1‐phenyl‐hydrazone or (E) 2‐oxobutanal‐1‐(4‐methylphenyl)hydrazone with aromatic diazonium salts. These formazanes condensed readily with ethyl cyanoacetate to yield 5‐methyl‐3‐oxo‐2‐phenyl‐6‐phenylazo‐2,3‐dihydropyridazine‐4‐carbonitrile compound ( 9a ), 5‐ethyl‐3‐oxo‐2‐p‐tolyl‐6‐p‐tolylazo‐2,3‐dihydro‐pyridazine‐4‐carbonitrile and/or 5‐ethyl‐3‐oxo‐2,6‐di‐p‐tolyl‐2,3‐dihydropyridazine‐4‐carbonitrile that reacted with sulphur in presence of piperidine to yield the aminothienopyridazinones. The latter reacted with electron poor olefins and acetylenes to yield aminophthalazines. Compound ( 9a ) reacted also with benzylidenemalononitrile to yield the arylazophthalazinone.  相似文献   

19.
A convenient synthesis of furo[3,2-b]pyridine and its 2- and 3-methyl derivatives from ethyl 3-hydroxypiconate ( 1 ) is described. The hydroxy ester 1 was O-alkylated with ethyl bromoacetate or ethyl 2-bromopropionate to give the diester 2a or 2b . Cyclization of compound 2a afforded ethyl 3-hydroxyfuro[3,2-b]pyridine-2-carboxylate ( 3 ) which in turn was hydrolyzed and decarboxylated to give furo[3,2-b]pyridin-3-(2H)-one ( 4a ). Cyclization of 2b gave the 2-methyl derivative 4b . Reduction of 4a and 4b with sodium borohydride yielded the corresponding hydroxy derivative 5a and 5b respectively, which were dehydrated with phosphoric acid to give furo[3,2-b]pyridine ( 6a ) and its 2-methyl derivative ( 6b ). 2-Acetylpyridin-3-ol ( 8 ) was converted to the ethoxycarbonylmethyl ether ( 9 ) by O-alkylation with ethyl bromoacetate, which was cyclized to give 3-methylfuro[3,2-b]pyridine-2-carboxylic acid ( 10 ). Decarboxylation of 10 afforded 3-methylfuro[3,2-b]pyridine ( 11 ).  相似文献   

20.
Kinetic studies on the Hinsberg condensation were performed trying to improve yields and achieve regio-selectivity in the attainment of benzene-substituted 3-methylquinoxalin-2(1H)-ones. The course of the reactions between o-phenylenediamine (o-PDA) and substituted o-PDA with pyruvic acid ( 2a ) or ethyl pyruvate ( 2b ) were followed by uv spectrophotometry at different pH values. The formation of 3-methylquinoxalin-2(1H)-one ( 6a ) was improved using sulphuric acid-water mixtures, in which the reaction proceeded by a different mechanism. 3-Methyl-7-methoxyquinoxalin-2(1H)-one ( 7b ) was regioselectively synthesized independently of the pH of the reaction media. Reaction of 2-amino-4-methylamine ( 1c ) with 2a or 2b led to a mixture of 6 and 7-quinoxalinone isomers, 6c and 7c , while 2-amino-4-nitroaniline ( 1d ) and 2,4-diaminoaniline ( 1e ) with 2a or 2b did not afford the heterocycle. In every case reactions with 2a were 100–1000 times faster than those with 2b . Mechanisms are proposed trying to account for the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号